![]() |
KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
#include "includes/model_part.h"Go to the source code of this file.
Namespaces | |
| Kratos | |
| REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES. | |
| ConstraintUtilities | |
| This namespace includes several utilities necessaries for the computation of the MPC. | |
| Kratos::ConstraintUtilities | |
Functions | |
| void | Kratos::ConstraintUtilities::ComputeActiveDofs (ModelPart &rModelPart, std::vector< int > &rActiveDofs, const ModelPart::DofsArrayType &rDofSet) |
| This method computes the active dofs. More... | |
| void | Kratos::ConstraintUtilities::DistributedComputeActiveDofs (ModelPart &rModelPart, std::vector< int > &rActiveDofs, const ModelPart::DofsArrayType &rDofSet, const std::size_t InitialDofId) |
| This method computes the active dofs. More... | |
| void | Kratos::ConstraintUtilities::ResetSlaveDofs (ModelPart &rModelPart) |
| This method resets the values of the slave dofs. More... | |
| void | Kratos::ConstraintUtilities::ApplyConstraints (ModelPart &rModelPart) |
| This method resets the values of the slave dofs. More... | |
| void | Kratos::ConstraintUtilities::PreComputeExplicitConstraintConstribution (ModelPart &rModelPart, const std::vector< std::string > &rDofVariableNames, const std::vector< std::string > &rResidualDofVariableNames) |
| This method precomputes the contribution of the explicit MPC over nodal residual forces. More... | |
| void | Kratos::ConstraintUtilities::PreComputeExplicitConstraintMassAndInertia (ModelPart &rModelPart, const std::string &DofDisplacementVariableName="DISPLACEMENT", const std::string &MassVariableName="NODAL_MASS", const std::string &DofRotationVariableName="ROTATION", const std::string &InertiaVariableName="NODAL_INERTIA_TENSOR") |
| This method precomputes the contribution of the explicit MPC over nodal masses and inertias. More... | |