KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
element_data_utilities.h
Go to the documentation of this file.
1 // | / |
2 // ' / __| _` | __| _ \ __|
3 // . \ | ( | | ( |\__ `
4 // _|\_\_| \__,_|\__|\___/ ____/
5 // Multi-Physics
6 //
7 // License: BSD License
8 // Kratos default license: kratos/license.txt
9 //
10 // Main authors: Suneth Warnakulasuriya
11 //
12 
13 #if !defined(KRATOS_K_OMEGA_SST_ELEMENT_DATA_UTILITIES_H_INCLUDED)
14 #define KRATOS_K_OMEGA_SST_ELEMENT_DATA_UTILITIES_H_INCLUDED
15 
16 // System includes
17 
18 // Project includes
19 #include "containers/array_1d.h"
21 
22 // Application includes
23 
24 namespace Kratos
25 {
28 
29 namespace KOmegaSSTElementData
30 {
31 double CalculateBlendedPhi(
32  const double Phi1,
33  const double Phi2,
34  const double F1);
35 
36 template<unsigned int TDim>
38  const double SigmaTurbulentSpecificEnergyDissipationRate2,
39  const double TurbulentSpecificEnergyDissipationRate,
40  const array_1d<double, TDim>& rTurbulentKineticEnergyGradient,
41  const array_1d<double, TDim>& rTurbulentSpecificEnergyDissipationRate);
42 
43 double CalculateF1(
44  const double TurbulentKineticEnergy,
45  const double TurbulentSpecificEnergyDissipationRate,
46  const double KinematicViscosity,
47  const double WallDistance,
48  const double BetaStar,
49  const double CrossDiffusion,
50  const double SigmaTurbulentSpecificEnergyDissipationRate2);
51 
52 double CalculateF2(
53  const double TurbulentKineticEnergy,
54  const double TurbulentSpecificEnergyDissipationRate,
55  const double KinematicViscosity,
56  const double WallDistance,
57  const double BetaStar);
58 
60  const double TurbulentKineticEnergy,
61  const double TurbulentSpecificEnergyDissipationRate,
62  const double VorticityNorm,
63  const double F2,
64  const double A1);
65 
66 double CalculateGamma(
67  const double Beta,
68  const double BetaStar,
69  const double Sigma,
70  const double Kappa);
71 
72 } // namespace KOmegaSSTElementData
73 
75 
76 } // namespace Kratos
77 
78 #endif
double CalculateCrossDiffusionTerm(const double SigmaTurbulentSpecificEnergyDissipationRate2, const double TurbulentSpecificEnergyDissipationRate, const array_1d< double, TDim > &rTurbulentKineticEnergyGradient, const array_1d< double, TDim > &rTurbulentSpecificEnergyDissipationRate)
Definition: element_data_utilities.cpp:36
double CalculateGamma(const double Beta, const double BetaStar, const double Sigma, const double Kappa)
Definition: element_data_utilities.cpp:122
double CalculateBlendedPhi(const double Phi1, const double Phi2, const double F1)
Definition: element_data_utilities.cpp:27
double CalculateF1(const double TurbulentKineticEnergy, const double TurbulentSpecificEnergyDissipationRate, const double KinematicViscosity, const double WallDistance, const double BetaStar, const double CrossDiffusion, const double SigmaTurbulentSpecificEnergyDissipationRate2)
Definition: element_data_utilities.cpp:53
double CalculateTurbulentKinematicViscosity(const double TurbulentKineticEnergy, const double TurbulentSpecificEnergyDissipationRate, const double VorticityNorm, const double F2, const double A1)
Definition: element_data_utilities.cpp:107
double CalculateF2(const double TurbulentKineticEnergy, const double TurbulentSpecificEnergyDissipationRate, const double KinematicViscosity, const double WallDistance, const double BetaStar)
Definition: element_data_utilities.cpp:82
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
def Phi2(pp, X)
Definition: cubic_law.py:78
def Phi1(pp, X)
Definition: cubic_law.py:75
Kappa
Definition: generate_hyper_elastic_simo_taylor_neo_hookean.py:11
def Beta(n, j)
Definition: quadrature.py:104