KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
Namespaces | Variables
generate_weakly_compressible_navier_stokes_element.py File Reference

Namespaces

 generate_weakly_compressible_navier_stokes_element
 

Variables

string generate_weakly_compressible_navier_stokes_element.mode = "c"
 Settings explanation DIMENSION TO COMPUTE: This symbolic generator is valid for both 2D and 3D cases. More...
 
bool generate_weakly_compressible_navier_stokes_element.do_simplifications = False
 
string generate_weakly_compressible_navier_stokes_element.dim_to_compute = "Both"
 
bool generate_weakly_compressible_navier_stokes_element.divide_by_rho = True
 
bool generate_weakly_compressible_navier_stokes_element.ASGS_stabilization = True
 
string generate_weakly_compressible_navier_stokes_element.formulation = "WeaklyCompressibleNavierStokes"
 
bool generate_weakly_compressible_navier_stokes_element.darcy_term = True
 
bool generate_weakly_compressible_navier_stokes_element.convective_term = True
 
bool generate_weakly_compressible_navier_stokes_element.artificial_compressibility = True
 
string generate_weakly_compressible_navier_stokes_element.linearisation = "Picard"
 
string generate_weakly_compressible_navier_stokes_element.output_filename = "weakly_compressible_navier_stokes.cpp"
 
string generate_weakly_compressible_navier_stokes_element.template_filename = "weakly_compressible_navier_stokes_cpp_template.cpp"
 
string generate_weakly_compressible_navier_stokes_element.err_msg = "Wrong formulation. Given \'" + formulation + "\'. Available options are \'WeaklyCompressibleNavierStokes\' and \'Stokes\'."
 
string generate_weakly_compressible_navier_stokes_element.info_msg = "\n"
 
list generate_weakly_compressible_navier_stokes_element.dim_vector = [2]
 
list generate_weakly_compressible_navier_stokes_element.nnodes_vector = [3]
 
 generate_weakly_compressible_navier_stokes_element.templatefile = open(template_filename)
 Initialize the outstring to be filled with the template .cpp file. More...
 
 generate_weakly_compressible_navier_stokes_element.outstring = templatefile.read()
 Replace the computed RHS and LHS in the template outstring. More...
 
int generate_weakly_compressible_navier_stokes_element.strain_size = 3
 
bool generate_weakly_compressible_navier_stokes_element.impose_partion_of_unity = False
 
 generate_weakly_compressible_navier_stokes_element.N
 
 generate_weakly_compressible_navier_stokes_element.DN
 
 generate_weakly_compressible_navier_stokes_element.v = DefineMatrix('v',nnodes,dim)
 Unknown fields definition. More...
 
 generate_weakly_compressible_navier_stokes_element.vn = DefineMatrix('vn',nnodes,dim)
 
 generate_weakly_compressible_navier_stokes_element.vnn = DefineMatrix('vnn',nnodes,dim)
 
 generate_weakly_compressible_navier_stokes_element.p = DefineVector('p',nnodes)
 
 generate_weakly_compressible_navier_stokes_element.pn = DefineVector('pn',nnodes)
 
 generate_weakly_compressible_navier_stokes_element.pnn = DefineVector('pnn',nnodes)
 
 generate_weakly_compressible_navier_stokes_element.rho_nodes = DefineVector('rho',nnodes)
 Fluid properties. More...
 
 generate_weakly_compressible_navier_stokes_element.c_nodes = DefineVector('c',nnodes)
 
 generate_weakly_compressible_navier_stokes_element.rho = rho_nodes.transpose()*N
 
 generate_weakly_compressible_navier_stokes_element.c = c_nodes.transpose()*N
 
 generate_weakly_compressible_navier_stokes_element.w = DefineMatrix('w',nnodes,dim)
 Test functions definition. More...
 
 generate_weakly_compressible_navier_stokes_element.q = DefineVector('q',nnodes)
 
 generate_weakly_compressible_navier_stokes_element.f = DefineMatrix('f',nnodes,dim)
 Other data definitions. More...
 
 generate_weakly_compressible_navier_stokes_element.C = DefineSymmetricMatrix('C',strain_size,strain_size)
 Constitutive matrix definition. More...
 
 generate_weakly_compressible_navier_stokes_element.stress = DefineVector('stress',strain_size)
 Stress vector definition. More...
 
 generate_weakly_compressible_navier_stokes_element.dt = sympy.Symbol('dt', positive = True)
 Other simbols definition. More...
 
 generate_weakly_compressible_navier_stokes_element.mu = sympy.Symbol('mu', positive = True)
 
 generate_weakly_compressible_navier_stokes_element.h = sympy.Symbol('h', positive = True)
 
 generate_weakly_compressible_navier_stokes_element.dyn_tau = sympy.Symbol('dyn_tau', positive = True)
 
 generate_weakly_compressible_navier_stokes_element.stab_c1 = sympy.Symbol('stab_c1', positive = True)
 
 generate_weakly_compressible_navier_stokes_element.stab_c2 = sympy.Symbol('stab_c2', positive = True)
 
 generate_weakly_compressible_navier_stokes_element.gauss_weight = sympy.Symbol('gauss_weight', positive = True)
 
bool generate_weakly_compressible_navier_stokes_element.sigma = sympy.Symbol('sigma', positive = True) if darcy_term else 0.0
 Symbols for Darcy term. More...
 
bool generate_weakly_compressible_navier_stokes_element.stab_c3 = sympy.Symbol('stab_c3', positive = True) if darcy_term else 0.0
 
 generate_weakly_compressible_navier_stokes_element.bdf0 = sympy.Symbol('bdf0')
 Backward differences coefficients. More...
 
 generate_weakly_compressible_navier_stokes_element.bdf1 = sympy.Symbol('bdf1')
 
 generate_weakly_compressible_navier_stokes_element.bdf2 = sympy.Symbol('bdf2')
 
 generate_weakly_compressible_navier_stokes_element.f_gauss = f.transpose()*N
 Data interpolation to the Gauss points. More...
 
 generate_weakly_compressible_navier_stokes_element.v_gauss = v.transpose()*N
 
 generate_weakly_compressible_navier_stokes_element.vconv = DefineMatrix('vconv',nnodes,dim)
 Convective velocity definition. More...
 
 generate_weakly_compressible_navier_stokes_element.vmesh = DefineMatrix('vmesh',nnodes,dim)
 
 generate_weakly_compressible_navier_stokes_element.vconv_gauss = vconv.transpose()*N
 
float generate_weakly_compressible_navier_stokes_element.stab_norm_a = 0.0
 Compute the stabilization parameters. More...
 
float generate_weakly_compressible_navier_stokes_element.tau1 = 1.0/(rho*dyn_tau/dt + stab_c2*rho*stab_norm_a/h + stab_c1*mu/h**2 + stab_c3*sigma/h**2)
 
 generate_weakly_compressible_navier_stokes_element.tau2 = mu + (stab_c2*rho*stab_norm_a*h + stab_c3*sigma)/stab_c1
 
tuple generate_weakly_compressible_navier_stokes_element.accel_gauss = (bdf0*v + bdf1*vn + bdf2*vnn).transpose()*N
 Compute the rest of magnitudes at the Gauss points. More...
 
 generate_weakly_compressible_navier_stokes_element.p_gauss = p.transpose()*N
 
tuple generate_weakly_compressible_navier_stokes_element.pder_gauss = (bdf0*p + bdf1*pn + bdf2*pnn).transpose()*N
 
 generate_weakly_compressible_navier_stokes_element.w_gauss = w.transpose()*N
 
 generate_weakly_compressible_navier_stokes_element.q_gauss = q.transpose()*N
 
 generate_weakly_compressible_navier_stokes_element.grad_w = DfjDxi(DN,w)
 Gradients computation (fluid dynamics gradient) More...
 
 generate_weakly_compressible_navier_stokes_element.grad_q = DfjDxi(DN,q)
 
 generate_weakly_compressible_navier_stokes_element.grad_p = DfjDxi(DN,p)
 
 generate_weakly_compressible_navier_stokes_element.grad_v = DfjDxi(DN,v)
 
 generate_weakly_compressible_navier_stokes_element.grad_rho = DfjDxi(DN,rho_nodes)
 
 generate_weakly_compressible_navier_stokes_element.div_w = div(DN,w)
 
 generate_weakly_compressible_navier_stokes_element.div_v = div(DN,v)
 
 generate_weakly_compressible_navier_stokes_element.div_vconv = div(DN,vconv)
 
 generate_weakly_compressible_navier_stokes_element.grad_sym_v = grad_sym_voigtform(DN,v)
 
 generate_weakly_compressible_navier_stokes_element.grad_w_voigt = grad_sym_voigtform(DN,w)
 
tuple generate_weakly_compressible_navier_stokes_element.convective_term_gauss = (vconv_gauss.transpose()*grad_v)
 
 generate_weakly_compressible_navier_stokes_element.rho_convective_term_gauss = vconv_gauss.transpose()*grad_rho
 
tuple generate_weakly_compressible_navier_stokes_element.rv_galerkin = rho*w_gauss.transpose()*f_gauss - rho*w_gauss.transpose()*accel_gauss - grad_w_voigt.transpose()*stress + div_w*p_gauss - sigma*w_gauss.transpose()*v_gauss - q_gauss*div_v
 Compute galerkin functional Navier-Stokes functional. More...
 
tuple generate_weakly_compressible_navier_stokes_element.vel_residual = rho*f_gauss - rho*accel_gauss - grad_p - sigma*v_gauss
 Stabilization functional terms Momentum conservation residual Note that the viscous stress term is dropped since linear elements are used. More...
 
 generate_weakly_compressible_navier_stokes_element.mas_residual = -div_v
 
float generate_weakly_compressible_navier_stokes_element.vel_subscale = tau1*vel_residual
 
 generate_weakly_compressible_navier_stokes_element.mas_subscale = tau2*mas_residual
 
float generate_weakly_compressible_navier_stokes_element.rv_stab = grad_q.transpose()*vel_subscale
 
tuple generate_weakly_compressible_navier_stokes_element.rv = rv_galerkin + rv_stab
 Add the stabilization terms to the original residual terms. More...
 
 generate_weakly_compressible_navier_stokes_element.dofs = sympy.zeros(nnodes*(dim+1), 1)
 Define DOFs and test function vectors. More...
 
 generate_weakly_compressible_navier_stokes_element.testfunc = sympy.zeros(nnodes*(dim+1), 1)
 
 generate_weakly_compressible_navier_stokes_element.rhs = Compute_RHS(rv.copy(), testfunc, do_simplifications)
 Compute LHS and RHS For the RHS computation one wants the residual of the previous iteration (residual based formulation). More...
 
 generate_weakly_compressible_navier_stokes_element.rhs_out = OutputVector_CollectingFactors(gauss_weight*rhs, "rRHS", mode, assignment_op='+=')
 
 generate_weakly_compressible_navier_stokes_element.lhs = Compute_LHS(rhs, testfunc, dofs, do_simplifications)
 
 generate_weakly_compressible_navier_stokes_element.lhs_out = OutputMatrix_CollectingFactors(gauss_weight*lhs, "rLHS", mode, assignment_op='+=')
 
 generate_weakly_compressible_navier_stokes_element.out = open(output_filename,'w')
 Write the modified template. More...