![]() |
KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
Variables | |
| string | mode = "c" |
| Settings explanation DIMENSION TO COMPUTE: This symbolic generator is valid for both 2D and 3D cases. More... | |
| bool | do_simplifications = False |
| string | dim_to_compute = "Both" |
| bool | divide_by_rho = True |
| bool | ASGS_stabilization = True |
| string | formulation = "WeaklyCompressibleNavierStokes" |
| bool | darcy_term = True |
| bool | convective_term = True |
| bool | artificial_compressibility = True |
| string | linearisation = "Picard" |
| string | output_filename = "weakly_compressible_navier_stokes.cpp" |
| string | template_filename = "weakly_compressible_navier_stokes_cpp_template.cpp" |
| string | err_msg = "Wrong formulation. Given \'" + formulation + "\'. Available options are \'WeaklyCompressibleNavierStokes\' and \'Stokes\'." |
| string | info_msg = "\n" |
| list | dim_vector = [2] |
| list | nnodes_vector = [3] |
| templatefile = open(template_filename) | |
| Initialize the outstring to be filled with the template .cpp file. More... | |
| outstring = templatefile.read() | |
| Replace the computed RHS and LHS in the template outstring. More... | |
| int | strain_size = 3 |
| bool | impose_partion_of_unity = False |
| N | |
| DN | |
| v = DefineMatrix('v',nnodes,dim) | |
| Unknown fields definition. More... | |
| vn = DefineMatrix('vn',nnodes,dim) | |
| vnn = DefineMatrix('vnn',nnodes,dim) | |
| p = DefineVector('p',nnodes) | |
| pn = DefineVector('pn',nnodes) | |
| pnn = DefineVector('pnn',nnodes) | |
| rho_nodes = DefineVector('rho',nnodes) | |
| Fluid properties. More... | |
| c_nodes = DefineVector('c',nnodes) | |
| rho = rho_nodes.transpose()*N | |
| c = c_nodes.transpose()*N | |
| w = DefineMatrix('w',nnodes,dim) | |
| Test functions definition. More... | |
| q = DefineVector('q',nnodes) | |
| f = DefineMatrix('f',nnodes,dim) | |
| Other data definitions. More... | |
| C = DefineSymmetricMatrix('C',strain_size,strain_size) | |
| Constitutive matrix definition. More... | |
| stress = DefineVector('stress',strain_size) | |
| Stress vector definition. More... | |
| dt = sympy.Symbol('dt', positive = True) | |
| Other simbols definition. More... | |
| mu = sympy.Symbol('mu', positive = True) | |
| h = sympy.Symbol('h', positive = True) | |
| dyn_tau = sympy.Symbol('dyn_tau', positive = True) | |
| stab_c1 = sympy.Symbol('stab_c1', positive = True) | |
| stab_c2 = sympy.Symbol('stab_c2', positive = True) | |
| gauss_weight = sympy.Symbol('gauss_weight', positive = True) | |
| bool | sigma = sympy.Symbol('sigma', positive = True) if darcy_term else 0.0 |
| Symbols for Darcy term. More... | |
| bool | stab_c3 = sympy.Symbol('stab_c3', positive = True) if darcy_term else 0.0 |
| bdf0 = sympy.Symbol('bdf0') | |
| Backward differences coefficients. More... | |
| bdf1 = sympy.Symbol('bdf1') | |
| bdf2 = sympy.Symbol('bdf2') | |
| f_gauss = f.transpose()*N | |
| Data interpolation to the Gauss points. More... | |
| v_gauss = v.transpose()*N | |
| vconv = DefineMatrix('vconv',nnodes,dim) | |
| Convective velocity definition. More... | |
| vmesh = DefineMatrix('vmesh',nnodes,dim) | |
| vconv_gauss = vconv.transpose()*N | |
| float | stab_norm_a = 0.0 |
| Compute the stabilization parameters. More... | |
| float | tau1 = 1.0/(rho*dyn_tau/dt + stab_c2*rho*stab_norm_a/h + stab_c1*mu/h**2 + stab_c3*sigma/h**2) |
| tau2 = mu + (stab_c2*rho*stab_norm_a*h + stab_c3*sigma)/stab_c1 | |
| tuple | accel_gauss = (bdf0*v + bdf1*vn + bdf2*vnn).transpose()*N |
| Compute the rest of magnitudes at the Gauss points. More... | |
| p_gauss = p.transpose()*N | |
| tuple | pder_gauss = (bdf0*p + bdf1*pn + bdf2*pnn).transpose()*N |
| w_gauss = w.transpose()*N | |
| q_gauss = q.transpose()*N | |
| grad_w = DfjDxi(DN,w) | |
| Gradients computation (fluid dynamics gradient) More... | |
| grad_q = DfjDxi(DN,q) | |
| grad_p = DfjDxi(DN,p) | |
| grad_v = DfjDxi(DN,v) | |
| grad_rho = DfjDxi(DN,rho_nodes) | |
| div_w = div(DN,w) | |
| div_v = div(DN,v) | |
| div_vconv = div(DN,vconv) | |
| grad_sym_v = grad_sym_voigtform(DN,v) | |
| grad_w_voigt = grad_sym_voigtform(DN,w) | |
| tuple | convective_term_gauss = (vconv_gauss.transpose()*grad_v) |
| rho_convective_term_gauss = vconv_gauss.transpose()*grad_rho | |
| tuple | rv_galerkin = rho*w_gauss.transpose()*f_gauss - rho*w_gauss.transpose()*accel_gauss - grad_w_voigt.transpose()*stress + div_w*p_gauss - sigma*w_gauss.transpose()*v_gauss - q_gauss*div_v |
| Compute galerkin functional Navier-Stokes functional. More... | |
| tuple | vel_residual = rho*f_gauss - rho*accel_gauss - grad_p - sigma*v_gauss |
| Stabilization functional terms Momentum conservation residual Note that the viscous stress term is dropped since linear elements are used. More... | |
| mas_residual = -div_v | |
| float | vel_subscale = tau1*vel_residual |
| mas_subscale = tau2*mas_residual | |
| float | rv_stab = grad_q.transpose()*vel_subscale |
| tuple | rv = rv_galerkin + rv_stab |
| Add the stabilization terms to the original residual terms. More... | |
| dofs = sympy.zeros(nnodes*(dim+1), 1) | |
| Define DOFs and test function vectors. More... | |
| testfunc = sympy.zeros(nnodes*(dim+1), 1) | |
| rhs = Compute_RHS(rv.copy(), testfunc, do_simplifications) | |
| Compute LHS and RHS For the RHS computation one wants the residual of the previous iteration (residual based formulation). More... | |
| rhs_out = OutputVector_CollectingFactors(gauss_weight*rhs, "rRHS", mode, assignment_op='+=') | |
| lhs = Compute_LHS(rhs, testfunc, dofs, do_simplifications) | |
| lhs_out = OutputMatrix_CollectingFactors(gauss_weight*lhs, "rLHS", mode, assignment_op='+=') | |
| out = open(output_filename,'w') | |
| Write the modified template. More... | |
| tuple generate_weakly_compressible_navier_stokes_element.accel_gauss = (bdf0*v + bdf1*vn + bdf2*vnn).transpose()*N |
Compute the rest of magnitudes at the Gauss points.
| bool generate_weakly_compressible_navier_stokes_element.artificial_compressibility = True |
| bool generate_weakly_compressible_navier_stokes_element.ASGS_stabilization = True |
| generate_weakly_compressible_navier_stokes_element.bdf0 = sympy.Symbol('bdf0') |
Backward differences coefficients.
| generate_weakly_compressible_navier_stokes_element.bdf1 = sympy.Symbol('bdf1') |
| generate_weakly_compressible_navier_stokes_element.bdf2 = sympy.Symbol('bdf2') |
| generate_weakly_compressible_navier_stokes_element.c = c_nodes.transpose()*N |
| generate_weakly_compressible_navier_stokes_element.C = DefineSymmetricMatrix('C',strain_size,strain_size) |
Constitutive matrix definition.
| generate_weakly_compressible_navier_stokes_element.c_nodes = DefineVector('c',nnodes) |
| bool generate_weakly_compressible_navier_stokes_element.convective_term = True |
| tuple generate_weakly_compressible_navier_stokes_element.convective_term_gauss = (vconv_gauss.transpose()*grad_v) |
| bool generate_weakly_compressible_navier_stokes_element.darcy_term = True |
| string generate_weakly_compressible_navier_stokes_element.dim_to_compute = "Both" |
| list generate_weakly_compressible_navier_stokes_element.dim_vector = [2] |
| bool generate_weakly_compressible_navier_stokes_element.divide_by_rho = True |
| generate_weakly_compressible_navier_stokes_element.DN |
| bool generate_weakly_compressible_navier_stokes_element.do_simplifications = False |
| generate_weakly_compressible_navier_stokes_element.dofs = sympy.zeros(nnodes*(dim+1), 1) |
Define DOFs and test function vectors.
| generate_weakly_compressible_navier_stokes_element.dt = sympy.Symbol('dt', positive = True) |
Other simbols definition.
| generate_weakly_compressible_navier_stokes_element.dyn_tau = sympy.Symbol('dyn_tau', positive = True) |
| string generate_weakly_compressible_navier_stokes_element.err_msg = "Wrong formulation. Given \'" + formulation + "\'. Available options are \'WeaklyCompressibleNavierStokes\' and \'Stokes\'." |
| generate_weakly_compressible_navier_stokes_element.f = DefineMatrix('f',nnodes,dim) |
Other data definitions.
| generate_weakly_compressible_navier_stokes_element.f_gauss = f.transpose()*N |
Data interpolation to the Gauss points.
| string generate_weakly_compressible_navier_stokes_element.formulation = "WeaklyCompressibleNavierStokes" |
| generate_weakly_compressible_navier_stokes_element.gauss_weight = sympy.Symbol('gauss_weight', positive = True) |
Gradients computation (fluid dynamics gradient)
| generate_weakly_compressible_navier_stokes_element.h = sympy.Symbol('h', positive = True) |
| bool generate_weakly_compressible_navier_stokes_element.impose_partion_of_unity = False |
| string generate_weakly_compressible_navier_stokes_element.info_msg = "\n" |
| generate_weakly_compressible_navier_stokes_element.lhs = Compute_LHS(rhs, testfunc, dofs, do_simplifications) |
| generate_weakly_compressible_navier_stokes_element.lhs_out = OutputMatrix_CollectingFactors(gauss_weight*lhs, "rLHS", mode, assignment_op='+=') |
| string generate_weakly_compressible_navier_stokes_element.linearisation = "Picard" |
| generate_weakly_compressible_navier_stokes_element.mas_residual = -div_v |
| generate_weakly_compressible_navier_stokes_element.mas_subscale = tau2*mas_residual |
| string generate_weakly_compressible_navier_stokes_element.mode = "c" |
Settings explanation DIMENSION TO COMPUTE: This symbolic generator is valid for both 2D and 3D cases.
Since the element has been programed with a dimension template in Kratos, it is advised to set the dim_to_compute flag as "Both". In this case the generated .cpp file will contain both 2D and 3D implementations. LINEARISATION SETTINGS: FullNR considers the convective velocity as "v-vmesh", hence v is taken into account in the derivation of the LHS and RHS. Picard (a.k.a. QuasiNR) considers the convective velocity as "a", thus it is considered as a constant in the derivation of the LHS and RHS. DIVIDE BY RHO: If set to true, divides the mass conservation equation by rho in order to have a better conditioned matrix. Otherwise the original form is kept. ARTIFICIAL COMPRESSIBILITY: If set to true, the time derivative of the density is introduced in the mass conservation equation together with the state equation dp/drho=c^2 (being c the sound velocity). Besides, the velocity divergence is not considered to be 0. These assumptions add some extra terms to the usual Navier-Stokes equations that act as a weak compressibility controlled by the value of "c". CONVECTIVE TERM: If set to true, the convective term is taken into account in the calculation of the variational form. This allows generating both Navier-Stokes and Stokes elements.
Symbolic generation settings
| generate_weakly_compressible_navier_stokes_element.mu = sympy.Symbol('mu', positive = True) |
| generate_weakly_compressible_navier_stokes_element.N |
| list generate_weakly_compressible_navier_stokes_element.nnodes_vector = [3] |
| generate_weakly_compressible_navier_stokes_element.out = open(output_filename,'w') |
Write the modified template.
| string generate_weakly_compressible_navier_stokes_element.output_filename = "weakly_compressible_navier_stokes.cpp" |
| generate_weakly_compressible_navier_stokes_element.outstring = templatefile.read() |
Replace the computed RHS and LHS in the template outstring.
| generate_weakly_compressible_navier_stokes_element.p = DefineVector('p',nnodes) |
| generate_weakly_compressible_navier_stokes_element.p_gauss = p.transpose()*N |
| tuple generate_weakly_compressible_navier_stokes_element.pder_gauss = (bdf0*p + bdf1*pn + bdf2*pnn).transpose()*N |
| generate_weakly_compressible_navier_stokes_element.pn = DefineVector('pn',nnodes) |
| generate_weakly_compressible_navier_stokes_element.pnn = DefineVector('pnn',nnodes) |
| generate_weakly_compressible_navier_stokes_element.q = DefineVector('q',nnodes) |
| generate_weakly_compressible_navier_stokes_element.q_gauss = q.transpose()*N |
| generate_weakly_compressible_navier_stokes_element.rho = rho_nodes.transpose()*N |
| generate_weakly_compressible_navier_stokes_element.rho_convective_term_gauss = vconv_gauss.transpose()*grad_rho |
| generate_weakly_compressible_navier_stokes_element.rho_nodes = DefineVector('rho',nnodes) |
Fluid properties.
| generate_weakly_compressible_navier_stokes_element.rhs = Compute_RHS(rv.copy(), testfunc, do_simplifications) |
Compute LHS and RHS For the RHS computation one wants the residual of the previous iteration (residual based formulation).
By this reason the stress is included as a symbolic variable, which is assumed to be passed as an argument from the previous iteration database.
| generate_weakly_compressible_navier_stokes_element.rhs_out = OutputVector_CollectingFactors(gauss_weight*rhs, "rRHS", mode, assignment_op='+=') |
| tuple generate_weakly_compressible_navier_stokes_element.rv = rv_galerkin + rv_stab |
Add the stabilization terms to the original residual terms.
| tuple generate_weakly_compressible_navier_stokes_element.rv_galerkin = rho*w_gauss.transpose()*f_gauss - rho*w_gauss.transpose()*accel_gauss - grad_w_voigt.transpose()*stress + div_w*p_gauss - sigma*w_gauss.transpose()*v_gauss - q_gauss*div_v |
Compute galerkin functional Navier-Stokes functional.
| float generate_weakly_compressible_navier_stokes_element.rv_stab = grad_q.transpose()*vel_subscale |
| bool generate_weakly_compressible_navier_stokes_element.sigma = sympy.Symbol('sigma', positive = True) if darcy_term else 0.0 |
Symbols for Darcy term.
| generate_weakly_compressible_navier_stokes_element.stab_c1 = sympy.Symbol('stab_c1', positive = True) |
| generate_weakly_compressible_navier_stokes_element.stab_c2 = sympy.Symbol('stab_c2', positive = True) |
| bool generate_weakly_compressible_navier_stokes_element.stab_c3 = sympy.Symbol('stab_c3', positive = True) if darcy_term else 0.0 |
| generate_weakly_compressible_navier_stokes_element.stab_norm_a = 0.0 |
Compute the stabilization parameters.
| int generate_weakly_compressible_navier_stokes_element.strain_size = 3 |
| generate_weakly_compressible_navier_stokes_element.stress = DefineVector('stress',strain_size) |
Stress vector definition.
| float generate_weakly_compressible_navier_stokes_element.tau1 = 1.0/(rho*dyn_tau/dt + stab_c2*rho*stab_norm_a/h + stab_c1*mu/h**2 + stab_c3*sigma/h**2) |
| bool generate_weakly_compressible_navier_stokes_element.tau2 = mu + (stab_c2*rho*stab_norm_a*h + stab_c3*sigma)/stab_c1 |
| string generate_weakly_compressible_navier_stokes_element.template_filename = "weakly_compressible_navier_stokes_cpp_template.cpp" |
| generate_weakly_compressible_navier_stokes_element.templatefile = open(template_filename) |
Initialize the outstring to be filled with the template .cpp file.
| generate_weakly_compressible_navier_stokes_element.testfunc = sympy.zeros(nnodes*(dim+1), 1) |
| generate_weakly_compressible_navier_stokes_element.v = DefineMatrix('v',nnodes,dim) |
Unknown fields definition.
| generate_weakly_compressible_navier_stokes_element.v_gauss = v.transpose()*N |
| generate_weakly_compressible_navier_stokes_element.vconv = DefineMatrix('vconv',nnodes,dim) |
Convective velocity definition.
| generate_weakly_compressible_navier_stokes_element.vconv_gauss = vconv.transpose()*N |
| tuple generate_weakly_compressible_navier_stokes_element.vel_residual = rho*f_gauss - rho*accel_gauss - grad_p - sigma*v_gauss |
Stabilization functional terms Momentum conservation residual Note that the viscous stress term is dropped since linear elements are used.
| float generate_weakly_compressible_navier_stokes_element.vel_subscale = tau1*vel_residual |
| generate_weakly_compressible_navier_stokes_element.vmesh = DefineMatrix('vmesh',nnodes,dim) |
| generate_weakly_compressible_navier_stokes_element.vn = DefineMatrix('vn',nnodes,dim) |
| generate_weakly_compressible_navier_stokes_element.vnn = DefineMatrix('vnn',nnodes,dim) |
| generate_weakly_compressible_navier_stokes_element.w = DefineMatrix('w',nnodes,dim) |
Test functions definition.
| generate_weakly_compressible_navier_stokes_element.w_gauss = w.transpose()*N |