KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
hexahedron_gauss_legendre_integration_points.h
Go to the documentation of this file.
1 // | / |
2 // ' / __| _` | __| _ \ __|
3 // . \ | ( | | ( |\__ `
4 // _|\_\_| \__,_|\__|\___/ ____/
5 // Multi-Physics
6 //
7 // License: BSD License
8 // Kratos default license: kratos/license.txt
9 //
10 // Main authors: Vicente Mataix Ferrandiz
11 //
12 //
13 
14 
15 #if !defined(KRATOS_HEXAHEDRON_GAUSS_LEGENDRE_INTEGRATION_POINTS_H_INCLUDED )
16 #define KRATOS_HEXAHEDRON_GAUSS_LEGENDRE_INTEGRATION_POINTS_H_INCLUDED
17 
18 // System includes
19 
20 // External includes
21 
22 // Project includes
23 #include "integration/quadrature.h"
24 
25 
26 namespace Kratos
27 {
28 
30 {
31 public:
33  typedef std::size_t SizeType;
34 
35  static const unsigned int Dimension = 3;
36 
38 
39  typedef std::array<IntegrationPointType, 1> IntegrationPointsArrayType;
40 
42 
44  {
45  return 1;
46  }
47 
49  {
50  static const IntegrationPointsArrayType s_integration_points{{
51  IntegrationPointType( 0.00 , 0.00, 0.00 , 8.00 )
52  }};
53  return s_integration_points;
54  }
55 
56  std::string Info() const
57  {
58  std::stringstream buffer;
59  buffer << "Hexahedron Gauss-Legendre quadrature 1 ";
60  return buffer.str();
61  }
62 
63 
64 }; // Class HexahedronGaussLegendreIntegrationPoints1
65 
67 {
68 public:
70  typedef std::size_t SizeType;
71 
72  static const unsigned int Dimension = 3;
73 
75 
76  typedef std::array<IntegrationPointType, 8> IntegrationPointsArrayType;
77 
79 
81  {
82  return 8;
83  }
84 
86  {
87  static const IntegrationPointsArrayType s_integration_points{{
88  IntegrationPointType( -1.00/std::sqrt(3.0) , -1.00/std::sqrt(3.0), -1.00/std::sqrt(3.0), 1.00 ),
89  IntegrationPointType( 1.00/std::sqrt(3.0) , -1.00/std::sqrt(3.0), -1.00/std::sqrt(3.0), 1.00 ),
90  IntegrationPointType( 1.00/std::sqrt(3.0) , 1.00/std::sqrt(3.0), -1.00/std::sqrt(3.0), 1.00 ),
91  IntegrationPointType( -1.00/std::sqrt(3.0) , 1.00/std::sqrt(3.0), -1.00/std::sqrt(3.0), 1.00 ),
92  IntegrationPointType( -1.00/std::sqrt(3.0) , -1.00/std::sqrt(3.0), 1.00/std::sqrt(3.0), 1.00 ),
93  IntegrationPointType( 1.00/std::sqrt(3.0) , -1.00/std::sqrt(3.0), 1.00/std::sqrt(3.0), 1.00 ),
94  IntegrationPointType( 1.00/std::sqrt(3.0) , 1.00/std::sqrt(3.0), 1.00/std::sqrt(3.0), 1.00 ),
95  IntegrationPointType( -1.00/std::sqrt(3.0) , 1.00/std::sqrt(3.0), 1.00/std::sqrt(3.0), 1.00 )
96  }};
97  return s_integration_points;
98  }
99 
100  std::string Info() const
101  {
102  std::stringstream buffer;
103  buffer << "Hexahedron Gauss-Legendre quadrature 2 ";
104  return buffer.str();
105  }
106 
107 
108 }; // Class HexahedronGaussLegendreIntegrationPoints2
109 
111 {
112 public:
114  typedef std::size_t SizeType;
115 
116  static const unsigned int Dimension = 3;
117 
119 
120  typedef std::array<IntegrationPointType, 27> IntegrationPointsArrayType;
121 
123 
125  {
126  return 27;
127  }
128 
130  {
131  static const IntegrationPointsArrayType s_integration_points{{
132  IntegrationPointType( -std::sqrt(3.00/5.00) , -std::sqrt(3.00/5.00), -std::sqrt(3.00/5.00), 125.00/729.00 ),
133  IntegrationPointType( 0.0 , -std::sqrt(3.00/5.00), -std::sqrt(3.00/5.00), 200.00/729.00 ),
134  IntegrationPointType( std::sqrt(3.00/5.00) , -std::sqrt(3.00/5.00), -std::sqrt(3.00/5.00), 125.00/729.00 ),
135 
136  IntegrationPointType( -std::sqrt(3.00/5.00) , 0.0, -std::sqrt(3.00/5.00), 200.00/729.00 ),
137  IntegrationPointType( 0.0 , 0.0, -std::sqrt(3.00/5.00), 320.00/729.00 ),
138  IntegrationPointType( std::sqrt(3.00/5.00) , 0.0, -std::sqrt(3.00/5.00), 200.00/729.00 ),
139 
140  IntegrationPointType( -std::sqrt(3.00/5.00) , std::sqrt(3.00/5.00), -std::sqrt(3.00/5.00), 125.00/729.00 ),
141  IntegrationPointType( 0.0 , std::sqrt(3.00/5.00), -std::sqrt(3.00/5.00), 200.00/729.00 ),
142  IntegrationPointType( std::sqrt(3.00/5.00) , std::sqrt(3.00/5.00), -std::sqrt(3.00/5.00), 125.00/729.00 ),
143 
144  IntegrationPointType( -std::sqrt(3.00/5.00) , -std::sqrt(3.00/5.00), 0.0, 200.00/729.00 ),
145  IntegrationPointType( 0.0 , -std::sqrt(3.00/5.00), 0.0, 320.00/729.00 ),
146  IntegrationPointType( std::sqrt(3.00/5.00) , -std::sqrt(3.00/5.00), 0.0, 200.00/729.00 ),
147 
148  IntegrationPointType( -std::sqrt(3.00/5.00) , 0.0, 0.0, 320.00/729.00 ),
149  IntegrationPointType( 0.0 , 0.0, 0.0, 512.00/729.00 ),
150  IntegrationPointType( std::sqrt(3.00/5.00) , 0.0, 0.0, 320.00/729.00 ),
151 
152  IntegrationPointType( -std::sqrt(3.00/5.00) , std::sqrt(3.00/5.00), 0.0, 200.00/729.00 ),
153  IntegrationPointType( 0.0 , std::sqrt(3.00/5.00), 0.0, 320.00/729.00 ),
154  IntegrationPointType( std::sqrt(3.00/5.00) , std::sqrt(3.00/5.00), 0.0, 200.00/729.00 ),
155 
156  IntegrationPointType( -std::sqrt(3.00/5.00) , -std::sqrt(3.00/5.00), std::sqrt(3.00/5.00), 125.00/729.00 ),
157  IntegrationPointType( 0.0 , -std::sqrt(3.00/5.00), std::sqrt(3.00/5.00), 200.00/729.00 ),
158  IntegrationPointType( std::sqrt(3.00/5.00) , -std::sqrt(3.00/5.00), std::sqrt(3.00/5.00), 125.00/729.00 ),
159 
160  IntegrationPointType( -std::sqrt(3.00/5.00) , 0.0, std::sqrt(3.00/5.00), 200.00/729.00 ),
161  IntegrationPointType( 0.0 , 0.0, std::sqrt(3.00/5.00), 320.00/729.00 ),
162  IntegrationPointType( std::sqrt(3.00/5.00) , 0.0, std::sqrt(3.00/5.00), 200.00/729.00 ),
163 
164  IntegrationPointType( -std::sqrt(3.00/5.00) , std::sqrt(3.00/5.00), std::sqrt(3.00/5.00), 125.00/729.00 ),
165  IntegrationPointType( 0.0 , std::sqrt(3.00/5.00), std::sqrt(3.00/5.00), 200.00/729.00 ),
166  IntegrationPointType( std::sqrt(3.00/5.00) , std::sqrt(3.00/5.00), std::sqrt(3.00/5.00), 125.00/729.00 )
167  }};
168  return s_integration_points;
169  }
170 
171  std::string Info() const
172  {
173  std::stringstream buffer;
174  buffer << "Hexadra Gauss-Legendre quadrature 3 ";
175  return buffer.str();
176  }
177 
178 
179 }; // Class HexahedronGaussLegendreIntegrationPoints3
180 
182 {
183 public:
185  typedef std::size_t SizeType;
186 
187  static const unsigned int Dimension = 3;
188 
190 
191  typedef std::array<IntegrationPointType, 64> IntegrationPointsArrayType;
192 
194 
196  {
197  return 64;
198  }
199 
201  {
202  static const IntegrationPointsArrayType s_integration_points{{
203  IntegrationPointType(-0.86113631159405257522 , -0.86113631159405257522 , -0.86113631159405257522 , 0.04209147749053145454),
204  IntegrationPointType(-0.33998104358485626480 , -0.86113631159405257522 , -0.86113631159405257522 , 0.07891151579507055098),
205  IntegrationPointType(0.33998104358485626480 , -0.86113631159405257522 , -0.86113631159405257522 , 0.07891151579507055098),
206  IntegrationPointType(0.86113631159405257522 , -0.86113631159405257522 , -0.86113631159405257522 , 0.04209147749053145454),
207  IntegrationPointType(-0.86113631159405257522 , -0.33998104358485626480 , -0.86113631159405257522 , 0.07891151579507055098),
208  IntegrationPointType(-0.33998104358485626480 , -0.33998104358485626480 , -0.86113631159405257522 , 0.14794033605678130087),
209  IntegrationPointType(0.33998104358485626480 , -0.33998104358485626480 , -0.86113631159405257522 , 0.14794033605678130087),
210  IntegrationPointType(0.86113631159405257522 , -0.33998104358485626480 , -0.86113631159405257522 , 0.07891151579507055098),
211  IntegrationPointType(-0.86113631159405257522 , 0.33998104358485626480 , -0.86113631159405257522 , 0.07891151579507055098),
212  IntegrationPointType(-0.33998104358485626480 , 0.33998104358485626480 , -0.86113631159405257522 , 0.14794033605678130087),
213  IntegrationPointType(0.33998104358485626480 , 0.33998104358485626480 , -0.86113631159405257522 , 0.14794033605678130087),
214  IntegrationPointType(0.86113631159405257522 , 0.33998104358485626480 , -0.86113631159405257522 , 0.07891151579507055098),
215  IntegrationPointType(-0.86113631159405257522 , 0.86113631159405257522 , -0.86113631159405257522 , 0.04209147749053145454),
216  IntegrationPointType(-0.33998104358485626480 , 0.86113631159405257522 , -0.86113631159405257522 , 0.07891151579507055098),
217  IntegrationPointType(0.33998104358485626480 , 0.86113631159405257522 , -0.86113631159405257522 , 0.07891151579507055098),
218  IntegrationPointType(0.86113631159405257522 , 0.86113631159405257522 , -0.86113631159405257522 , 0.04209147749053145454),
219  IntegrationPointType(-0.86113631159405257522 , -0.86113631159405257522 , -0.33998104358485626480 , 0.07891151579507055098),
220  IntegrationPointType(-0.33998104358485626480 , -0.86113631159405257522 , -0.33998104358485626480 , 0.14794033605678130087),
221  IntegrationPointType(0.33998104358485626480 , -0.86113631159405257522 , -0.33998104358485626480 , 0.14794033605678130087),
222  IntegrationPointType(0.86113631159405257522 , -0.86113631159405257522 , -0.33998104358485626480 , 0.07891151579507055098),
223  IntegrationPointType(-0.86113631159405257522 , -0.33998104358485626480 , -0.33998104358485626480 , 0.14794033605678130087),
224  IntegrationPointType(-0.33998104358485626480 , -0.33998104358485626480 , -0.33998104358485626480 , 0.27735296695391298990),
225  IntegrationPointType(0.33998104358485626480 , -0.33998104358485626480 , -0.33998104358485626480 , 0.27735296695391298990),
226  IntegrationPointType(0.86113631159405257522 , -0.33998104358485626480 , -0.33998104358485626480 , 0.14794033605678130087),
227  IntegrationPointType(-0.86113631159405257522 , 0.33998104358485626480 , -0.33998104358485626480 , 0.14794033605678130087),
228  IntegrationPointType(-0.33998104358485626480 , 0.33998104358485626480 , -0.33998104358485626480 , 0.27735296695391298990),
229  IntegrationPointType(0.33998104358485626480 , 0.33998104358485626480 , -0.33998104358485626480 , 0.27735296695391298990),
230  IntegrationPointType(0.86113631159405257522 , 0.33998104358485626480 , -0.33998104358485626480 , 0.14794033605678130087),
231  IntegrationPointType(-0.86113631159405257522 , 0.86113631159405257522 , -0.33998104358485626480 , 0.07891151579507055098),
232  IntegrationPointType(-0.33998104358485626480 , 0.86113631159405257522 , -0.33998104358485626480 , 0.14794033605678130087),
233  IntegrationPointType(0.33998104358485626480 , 0.86113631159405257522 , -0.33998104358485626480 , 0.14794033605678130087),
234  IntegrationPointType(0.86113631159405257522 , 0.86113631159405257522 , -0.33998104358485626480 , 0.07891151579507055098),
235  IntegrationPointType(-0.86113631159405257522 , -0.86113631159405257522 , 0.33998104358485626480 , 0.07891151579507055098),
236  IntegrationPointType(-0.33998104358485626480 , -0.86113631159405257522 , 0.33998104358485626480 , 0.14794033605678130087),
237  IntegrationPointType(0.33998104358485626480 , -0.86113631159405257522 , 0.33998104358485626480 , 0.14794033605678130087),
238  IntegrationPointType(0.86113631159405257522 , -0.86113631159405257522 , 0.33998104358485626480 , 0.07891151579507055098),
239  IntegrationPointType(-0.86113631159405257522 , -0.33998104358485626480 , 0.33998104358485626480 , 0.14794033605678130087),
240  IntegrationPointType(-0.33998104358485626480 , -0.33998104358485626480 , 0.33998104358485626480 , 0.27735296695391298990),
241  IntegrationPointType(0.33998104358485626480 , -0.33998104358485626480 , 0.33998104358485626480 , 0.27735296695391298990),
242  IntegrationPointType(0.86113631159405257522 , -0.33998104358485626480 , 0.33998104358485626480 , 0.14794033605678130087),
243  IntegrationPointType(-0.86113631159405257522 , 0.33998104358485626480 , 0.33998104358485626480 , 0.14794033605678130087),
244  IntegrationPointType(-0.33998104358485626480 , 0.33998104358485626480 , 0.33998104358485626480 , 0.27735296695391298990),
245  IntegrationPointType(0.33998104358485626480 , 0.33998104358485626480 , 0.33998104358485626480 , 0.27735296695391298990),
246  IntegrationPointType(0.86113631159405257522 , 0.33998104358485626480 , 0.33998104358485626480 , 0.14794033605678130087),
247  IntegrationPointType(-0.86113631159405257522 , 0.86113631159405257522 , 0.33998104358485626480 , 0.07891151579507055098),
248  IntegrationPointType(-0.33998104358485626480 , 0.86113631159405257522 , 0.33998104358485626480 , 0.14794033605678130087),
249  IntegrationPointType(0.33998104358485626480 , 0.86113631159405257522 , 0.33998104358485626480 , 0.14794033605678130087),
250  IntegrationPointType(0.86113631159405257522 , 0.86113631159405257522 , 0.33998104358485626480 , 0.07891151579507055098),
251  IntegrationPointType(-0.86113631159405257522 , -0.86113631159405257522 , 0.86113631159405257522 , 0.04209147749053145454),
252  IntegrationPointType(-0.33998104358485626480 , -0.86113631159405257522 , 0.86113631159405257522 , 0.07891151579507055098),
253  IntegrationPointType(0.33998104358485626480 , -0.86113631159405257522 , 0.86113631159405257522 , 0.07891151579507055098),
254  IntegrationPointType(0.86113631159405257522 , -0.86113631159405257522 , 0.86113631159405257522 , 0.04209147749053145454),
255  IntegrationPointType(-0.86113631159405257522 , -0.33998104358485626480 , 0.86113631159405257522 , 0.07891151579507055098),
256  IntegrationPointType(-0.33998104358485626480 , -0.33998104358485626480 , 0.86113631159405257522 , 0.14794033605678130087),
257  IntegrationPointType(0.33998104358485626480 , -0.33998104358485626480 , 0.86113631159405257522 , 0.14794033605678130087),
258  IntegrationPointType(0.86113631159405257522 , -0.33998104358485626480 , 0.86113631159405257522 , 0.07891151579507055098),
259  IntegrationPointType(-0.86113631159405257522 , 0.33998104358485626480 , 0.86113631159405257522 , 0.07891151579507055098),
260  IntegrationPointType(-0.33998104358485626480 , 0.33998104358485626480 , 0.86113631159405257522 , 0.14794033605678130087),
261  IntegrationPointType(0.33998104358485626480 , 0.33998104358485626480 , 0.86113631159405257522 , 0.14794033605678130087),
262  IntegrationPointType(0.86113631159405257522 , 0.33998104358485626480 , 0.86113631159405257522 , 0.07891151579507055098),
263  IntegrationPointType(-0.86113631159405257522 , 0.86113631159405257522 , 0.86113631159405257522 , 0.04209147749053145454),
264  IntegrationPointType(-0.33998104358485626480 , 0.86113631159405257522 , 0.86113631159405257522 , 0.07891151579507055098),
265  IntegrationPointType(0.33998104358485626480 , 0.86113631159405257522 , 0.86113631159405257522 , 0.07891151579507055098),
266  IntegrationPointType(0.86113631159405257522 , 0.86113631159405257522 , 0.86113631159405257522 , 0.04209147749053145454)
267  }};
268  return s_integration_points;
269  }
270 
271  std::string Info() const
272  {
273  std::stringstream buffer;
274  buffer << "Hexadra Gauss-Legendre quadrature 4 ";
275  return buffer.str();
276  }
277 
278 
279 }; // Class HexahedronGaussLegendreIntegrationPoints4
280 
282 {
283 public:
285  typedef std::size_t SizeType;
286 
287  static const unsigned int Dimension = 3;
288 
290 
291  typedef std::array<IntegrationPointType, 125> IntegrationPointsArrayType;
292 
294 
296  {
297  return 125;
298  }
299 
301  {
302  static const IntegrationPointsArrayType s_integration_points{{
303  IntegrationPointType(-0.90617984593866399280 , -0.90617984593866399280 , -0.90617984593866399280 , 0.013299736420632648092),
304  IntegrationPointType(-0.53846931010568309104 , -0.90617984593866399280 , -0.90617984593866399280 , 0.026867508765371842524),
305  IntegrationPointType(0 , -0.90617984593866399280 , -0.90617984593866399280 , 0.031934207352848290676),
306  IntegrationPointType(0.53846931010568309104 , -0.90617984593866399280 , -0.90617984593866399280 , 0.026867508765371842524),
307  IntegrationPointType(0.90617984593866399280 , -0.90617984593866399280 , -0.90617984593866399280 , 0.013299736420632648092),
308  IntegrationPointType(-0.90617984593866399280 , -0.53846931010568309104 , -0.90617984593866399280 , 0.026867508765371842524),
309  IntegrationPointType(-0.53846931010568309104 , -0.53846931010568309104 , -0.90617984593866399280 , 0.05427649123462815748),
310  IntegrationPointType(0 , -0.53846931010568309104 , -0.90617984593866399280 , 0.06451200000000000000),
311  IntegrationPointType(0.53846931010568309104 , -0.53846931010568309104 , -0.90617984593866399280 , 0.05427649123462815748),
312  IntegrationPointType(0.90617984593866399280 , -0.53846931010568309104 , -0.90617984593866399280 , 0.026867508765371842524),
313  IntegrationPointType(-0.90617984593866399280 , 0 , -0.90617984593866399280 , 0.031934207352848290676),
314  IntegrationPointType(-0.53846931010568309104 , 0 , -0.90617984593866399280 , 0.06451200000000000000),
315  IntegrationPointType(0 , 0 , -0.90617984593866399280 , 0.07667773006934522489),
316  IntegrationPointType(0.53846931010568309104 , 0 , -0.90617984593866399280 , 0.06451200000000000000),
317  IntegrationPointType(0.90617984593866399280 , 0 , -0.90617984593866399280 , 0.031934207352848290676),
318  IntegrationPointType(-0.90617984593866399280 , 0.53846931010568309104 , -0.90617984593866399280 , 0.026867508765371842524),
319  IntegrationPointType(-0.53846931010568309104 , 0.53846931010568309104 , -0.90617984593866399280 , 0.05427649123462815748),
320  IntegrationPointType(0 , 0.53846931010568309104 , -0.90617984593866399280 , 0.06451200000000000000),
321  IntegrationPointType(0.53846931010568309104 , 0.53846931010568309104 , -0.90617984593866399280 , 0.05427649123462815748),
322  IntegrationPointType(0.90617984593866399280 , 0.53846931010568309104 , -0.90617984593866399280 , 0.026867508765371842524),
323  IntegrationPointType(-0.90617984593866399280 , 0.90617984593866399280 , -0.90617984593866399280 , 0.013299736420632648092),
324  IntegrationPointType(-0.53846931010568309104 , 0.90617984593866399280 , -0.90617984593866399280 , 0.026867508765371842524),
325  IntegrationPointType(0 , 0.90617984593866399280 , -0.90617984593866399280 , 0.031934207352848290676),
326  IntegrationPointType(0.53846931010568309104 , 0.90617984593866399280 , -0.90617984593866399280 , 0.026867508765371842524),
327  IntegrationPointType(0.90617984593866399280 , 0.90617984593866399280 , -0.90617984593866399280 , 0.013299736420632648092),
328  IntegrationPointType(-0.90617984593866399280 , -0.90617984593866399280 , -0.53846931010568309104 , 0.026867508765371842524),
329  IntegrationPointType(-0.53846931010568309104 , -0.90617984593866399280 , -0.53846931010568309104 , 0.05427649123462815748),
330  IntegrationPointType(0 , -0.90617984593866399280 , -0.53846931010568309104 , 0.06451200000000000000),
331  IntegrationPointType(0.53846931010568309104 , -0.90617984593866399280 , -0.53846931010568309104 , 0.05427649123462815748),
332  IntegrationPointType(0.90617984593866399280 , -0.90617984593866399280 , -0.53846931010568309104 , 0.026867508765371842524),
333  IntegrationPointType(-0.90617984593866399280 , -0.53846931010568309104 , -0.53846931010568309104 , 0.05427649123462815748),
334  IntegrationPointType(-0.53846931010568309104 , -0.53846931010568309104 , -0.53846931010568309104 , 0.10964684245453881967),
335  IntegrationPointType(0 , -0.53846931010568309104 , -0.53846931010568309104 , 0.13032414106964827997),
336  IntegrationPointType(0.53846931010568309104 , -0.53846931010568309104 , -0.53846931010568309104 , 0.10964684245453881967),
337  IntegrationPointType(0.90617984593866399280 , -0.53846931010568309104 , -0.53846931010568309104 , 0.05427649123462815748),
338  IntegrationPointType(-0.90617984593866399280 , 0 , -0.53846931010568309104 , 0.06451200000000000000),
339  IntegrationPointType(-0.53846931010568309104 , 0 , -0.53846931010568309104 , 0.13032414106964827997),
340  IntegrationPointType(0 , 0 , -0.53846931010568309104 , 0.15490078296220484370),
341  IntegrationPointType(0.53846931010568309104 , 0 , -0.53846931010568309104 , 0.13032414106964827997),
342  IntegrationPointType(0.90617984593866399280 , 0 , -0.53846931010568309104 , 0.06451200000000000000),
343  IntegrationPointType(-0.90617984593866399280 , 0.53846931010568309104 , -0.53846931010568309104 , 0.05427649123462815748),
344  IntegrationPointType(-0.53846931010568309104 , 0.53846931010568309104 , -0.53846931010568309104 , 0.10964684245453881967),
345  IntegrationPointType(0 , 0.53846931010568309104 , -0.53846931010568309104 , 0.13032414106964827997),
346  IntegrationPointType(0.53846931010568309104 , 0.53846931010568309104 , -0.53846931010568309104 , 0.10964684245453881967),
347  IntegrationPointType(0.90617984593866399280 , 0.53846931010568309104 , -0.53846931010568309104 , 0.05427649123462815748),
348  IntegrationPointType(-0.90617984593866399280 , 0.90617984593866399280 , -0.53846931010568309104 , 0.026867508765371842524),
349  IntegrationPointType(-0.53846931010568309104 , 0.90617984593866399280 , -0.53846931010568309104 , 0.05427649123462815748),
350  IntegrationPointType(0 , 0.90617984593866399280 , -0.53846931010568309104 , 0.06451200000000000000),
351  IntegrationPointType(0.53846931010568309104 , 0.90617984593866399280 , -0.53846931010568309104 , 0.05427649123462815748),
352  IntegrationPointType(0.90617984593866399280 , 0.90617984593866399280 , -0.53846931010568309104 , 0.026867508765371842524),
353  IntegrationPointType(-0.90617984593866399280 , -0.90617984593866399280 , 0 , 0.031934207352848290676),
354  IntegrationPointType(-0.53846931010568309104 , -0.90617984593866399280 , 0 , 0.06451200000000000000),
355  IntegrationPointType(0 , -0.90617984593866399280 , 0 , 0.07667773006934522489),
356  IntegrationPointType(0.53846931010568309104 , -0.90617984593866399280 , 0 , 0.06451200000000000000),
357  IntegrationPointType(0.90617984593866399280 , -0.90617984593866399280 , 0 , 0.031934207352848290676),
358  IntegrationPointType(-0.90617984593866399280 , -0.53846931010568309104 , 0 , 0.06451200000000000000),
359  IntegrationPointType(-0.53846931010568309104 , -0.53846931010568309104 , 0 , 0.13032414106964827997),
360  IntegrationPointType(0 , -0.53846931010568309104 , 0 , 0.15490078296220484370),
361  IntegrationPointType(0.53846931010568309104 , -0.53846931010568309104 , 0 , 0.13032414106964827997),
362  IntegrationPointType(0.90617984593866399280 , -0.53846931010568309104 , 0 , 0.06451200000000000000),
363  IntegrationPointType(-0.90617984593866399280 , 0 , 0 , 0.07667773006934522489),
364  IntegrationPointType(-0.53846931010568309104 , 0 , 0 , 0.15490078296220484370),
365  IntegrationPointType(0 , 0 , 0 , 0.18411210973936899863),
366  IntegrationPointType(0.53846931010568309104 , 0 , 0 , 0.15490078296220484370),
367  IntegrationPointType(0.90617984593866399280 , 0 , 0 , 0.07667773006934522489),
368  IntegrationPointType(-0.90617984593866399280 , 0.53846931010568309104 , 0 , 0.06451200000000000000),
369  IntegrationPointType(-0.53846931010568309104 , 0.53846931010568309104 , 0 , 0.13032414106964827997),
370  IntegrationPointType(0 , 0.53846931010568309104 , 0 , 0.15490078296220484370),
371  IntegrationPointType(0.53846931010568309104 , 0.53846931010568309104 , 0 , 0.13032414106964827997),
372  IntegrationPointType(0.90617984593866399280 , 0.53846931010568309104 , 0 , 0.06451200000000000000),
373  IntegrationPointType(-0.90617984593866399280 , 0.90617984593866399280 , 0 , 0.031934207352848290676),
374  IntegrationPointType(-0.53846931010568309104 , 0.90617984593866399280 , 0 , 0.06451200000000000000),
375  IntegrationPointType(0 , 0.90617984593866399280 , 0 , 0.07667773006934522489),
376  IntegrationPointType(0.53846931010568309104 , 0.90617984593866399280 , 0 , 0.06451200000000000000),
377  IntegrationPointType(0.90617984593866399280 , 0.90617984593866399280 , 0 , 0.031934207352848290676),
378  IntegrationPointType(-0.90617984593866399280 , -0.90617984593866399280 , 0.53846931010568309104 , 0.026867508765371842524),
379  IntegrationPointType(-0.53846931010568309104 , -0.90617984593866399280 , 0.53846931010568309104 , 0.05427649123462815748),
380  IntegrationPointType(0 , -0.90617984593866399280 , 0.53846931010568309104 , 0.06451200000000000000),
381  IntegrationPointType(0.53846931010568309104 , -0.90617984593866399280 , 0.53846931010568309104 , 0.05427649123462815748),
382  IntegrationPointType(0.90617984593866399280 , -0.90617984593866399280 , 0.53846931010568309104 , 0.026867508765371842524),
383  IntegrationPointType(-0.90617984593866399280 , -0.53846931010568309104 , 0.53846931010568309104 , 0.05427649123462815748),
384  IntegrationPointType(-0.53846931010568309104 , -0.53846931010568309104 , 0.53846931010568309104 , 0.10964684245453881967),
385  IntegrationPointType(0 , -0.53846931010568309104 , 0.53846931010568309104 , 0.13032414106964827997),
386  IntegrationPointType(0.53846931010568309104 , -0.53846931010568309104 , 0.53846931010568309104 , 0.10964684245453881967),
387  IntegrationPointType(0.90617984593866399280 , -0.53846931010568309104 , 0.53846931010568309104 , 0.05427649123462815748),
388  IntegrationPointType(-0.90617984593866399280 , 0 , 0.53846931010568309104 , 0.06451200000000000000),
389  IntegrationPointType(-0.53846931010568309104 , 0 , 0.53846931010568309104 , 0.13032414106964827997),
390  IntegrationPointType(0 , 0 , 0.53846931010568309104 , 0.15490078296220484370),
391  IntegrationPointType(0.53846931010568309104 , 0 , 0.53846931010568309104 , 0.13032414106964827997),
392  IntegrationPointType(0.90617984593866399280 , 0 , 0.53846931010568309104 , 0.06451200000000000000),
393  IntegrationPointType(-0.90617984593866399280 , 0.53846931010568309104 , 0.53846931010568309104 , 0.05427649123462815748),
394  IntegrationPointType(-0.53846931010568309104 , 0.53846931010568309104 , 0.53846931010568309104 , 0.10964684245453881967),
395  IntegrationPointType(0 , 0.53846931010568309104 , 0.53846931010568309104 , 0.13032414106964827997),
396  IntegrationPointType(0.53846931010568309104 , 0.53846931010568309104 , 0.53846931010568309104 , 0.10964684245453881967),
397  IntegrationPointType(0.90617984593866399280 , 0.53846931010568309104 , 0.53846931010568309104 , 0.05427649123462815748),
398  IntegrationPointType(-0.90617984593866399280 , 0.90617984593866399280 , 0.53846931010568309104 , 0.026867508765371842524),
399  IntegrationPointType(-0.53846931010568309104 , 0.90617984593866399280 , 0.53846931010568309104 , 0.05427649123462815748),
400  IntegrationPointType(0 , 0.90617984593866399280 , 0.53846931010568309104 , 0.06451200000000000000),
401  IntegrationPointType(0.53846931010568309104 , 0.90617984593866399280 , 0.53846931010568309104 , 0.05427649123462815748),
402  IntegrationPointType(0.90617984593866399280 , 0.90617984593866399280 , 0.53846931010568309104 , 0.026867508765371842524),
403  IntegrationPointType(-0.90617984593866399280 , -0.90617984593866399280 , 0.90617984593866399280 , 0.013299736420632648092),
404  IntegrationPointType(-0.53846931010568309104 , -0.90617984593866399280 , 0.90617984593866399280 , 0.026867508765371842524),
405  IntegrationPointType(0 , -0.90617984593866399280 , 0.90617984593866399280 , 0.031934207352848290676),
406  IntegrationPointType(0.53846931010568309104 , -0.90617984593866399280 , 0.90617984593866399280 , 0.026867508765371842524),
407  IntegrationPointType(0.90617984593866399280 , -0.90617984593866399280 , 0.90617984593866399280 , 0.013299736420632648092),
408  IntegrationPointType(-0.90617984593866399280 , -0.53846931010568309104 , 0.90617984593866399280 , 0.026867508765371842524),
409  IntegrationPointType(-0.53846931010568309104 , -0.53846931010568309104 , 0.90617984593866399280 , 0.05427649123462815748),
410  IntegrationPointType(0 , -0.53846931010568309104 , 0.90617984593866399280 , 0.06451200000000000000),
411  IntegrationPointType(0.53846931010568309104 , -0.53846931010568309104 , 0.90617984593866399280 , 0.05427649123462815748),
412  IntegrationPointType(0.90617984593866399280 , -0.53846931010568309104 , 0.90617984593866399280 , 0.026867508765371842524),
413  IntegrationPointType(-0.90617984593866399280 , 0 , 0.90617984593866399280 , 0.031934207352848290676),
414  IntegrationPointType(-0.53846931010568309104 , 0 , 0.90617984593866399280 , 0.06451200000000000000),
415  IntegrationPointType(0 , 0 , 0.90617984593866399280 , 0.07667773006934522489),
416  IntegrationPointType(0.53846931010568309104 , 0 , 0.90617984593866399280 , 0.06451200000000000000),
417  IntegrationPointType(0.90617984593866399280 , 0 , 0.90617984593866399280 , 0.031934207352848290676),
418  IntegrationPointType(-0.90617984593866399280 , 0.53846931010568309104 , 0.90617984593866399280 , 0.026867508765371842524),
419  IntegrationPointType(-0.53846931010568309104 , 0.53846931010568309104 , 0.90617984593866399280 , 0.05427649123462815748),
420  IntegrationPointType(0 , 0.53846931010568309104 , 0.90617984593866399280 , 0.06451200000000000000),
421  IntegrationPointType(0.53846931010568309104 , 0.53846931010568309104 , 0.90617984593866399280 , 0.05427649123462815748),
422  IntegrationPointType(0.90617984593866399280 , 0.53846931010568309104 , 0.90617984593866399280 , 0.026867508765371842524),
423  IntegrationPointType(-0.90617984593866399280 , 0.90617984593866399280 , 0.90617984593866399280 , 0.013299736420632648092),
424  IntegrationPointType(-0.53846931010568309104 , 0.90617984593866399280 , 0.90617984593866399280 , 0.026867508765371842524),
425  IntegrationPointType(0 , 0.90617984593866399280 , 0.90617984593866399280 , 0.031934207352848290676),
426  IntegrationPointType(0.53846931010568309104 , 0.90617984593866399280 , 0.90617984593866399280 , 0.026867508765371842524),
427  IntegrationPointType(0.90617984593866399280 , 0.90617984593866399280 , 0.90617984593866399280 , 0.013299736420632648092)
428  }};
429  return s_integration_points;
430  }
431 
432  std::string Info() const
433  {
434  std::stringstream buffer;
435  buffer << "Hexadra Gauss-Legendre quadrature 5 ";
436  return buffer.str();
437  }
438 
439 
440 }; // Class HexahedronGaussLegendreIntegrationPoints5
441 
444 
445 
449 
450 
452 
453 
454 } // namespace Kratos.
455 
456 #endif // KRATOS_HEXAHEDRON_GAUSS_LEGENDRE_INTEGRATION_POINTS_H_INCLUDED defined
457 
458 
Definition: hexahedron_gauss_legendre_integration_points.h:30
static const IntegrationPointsArrayType & IntegrationPoints()
Definition: hexahedron_gauss_legendre_integration_points.h:48
std::string Info() const
Definition: hexahedron_gauss_legendre_integration_points.h:56
std::size_t SizeType
Definition: hexahedron_gauss_legendre_integration_points.h:33
static const unsigned int Dimension
Definition: hexahedron_gauss_legendre_integration_points.h:35
IntegrationPointType::PointType PointType
Definition: hexahedron_gauss_legendre_integration_points.h:41
static SizeType IntegrationPointsNumber()
Definition: hexahedron_gauss_legendre_integration_points.h:43
KRATOS_CLASS_POINTER_DEFINITION(HexahedronGaussLegendreIntegrationPoints1)
IntegrationPoint< 3 > IntegrationPointType
Definition: hexahedron_gauss_legendre_integration_points.h:37
std::array< IntegrationPointType, 1 > IntegrationPointsArrayType
Definition: hexahedron_gauss_legendre_integration_points.h:39
Definition: hexahedron_gauss_legendre_integration_points.h:67
std::size_t SizeType
Definition: hexahedron_gauss_legendre_integration_points.h:70
IntegrationPoint< 3 > IntegrationPointType
Definition: hexahedron_gauss_legendre_integration_points.h:74
static const unsigned int Dimension
Definition: hexahedron_gauss_legendre_integration_points.h:72
KRATOS_CLASS_POINTER_DEFINITION(HexahedronGaussLegendreIntegrationPoints2)
static SizeType IntegrationPointsNumber()
Definition: hexahedron_gauss_legendre_integration_points.h:80
std::array< IntegrationPointType, 8 > IntegrationPointsArrayType
Definition: hexahedron_gauss_legendre_integration_points.h:76
std::string Info() const
Definition: hexahedron_gauss_legendre_integration_points.h:100
static const IntegrationPointsArrayType & IntegrationPoints()
Definition: hexahedron_gauss_legendre_integration_points.h:85
IntegrationPointType::PointType PointType
Definition: hexahedron_gauss_legendre_integration_points.h:78
Definition: hexahedron_gauss_legendre_integration_points.h:111
static const unsigned int Dimension
Definition: hexahedron_gauss_legendre_integration_points.h:116
static SizeType IntegrationPointsNumber()
Definition: hexahedron_gauss_legendre_integration_points.h:124
std::array< IntegrationPointType, 27 > IntegrationPointsArrayType
Definition: hexahedron_gauss_legendre_integration_points.h:120
std::string Info() const
Definition: hexahedron_gauss_legendre_integration_points.h:171
static const IntegrationPointsArrayType & IntegrationPoints()
Definition: hexahedron_gauss_legendre_integration_points.h:129
IntegrationPointType::PointType PointType
Definition: hexahedron_gauss_legendre_integration_points.h:122
std::size_t SizeType
Definition: hexahedron_gauss_legendre_integration_points.h:114
IntegrationPoint< 3 > IntegrationPointType
Definition: hexahedron_gauss_legendre_integration_points.h:118
KRATOS_CLASS_POINTER_DEFINITION(HexahedronGaussLegendreIntegrationPoints3)
Definition: hexahedron_gauss_legendre_integration_points.h:182
std::array< IntegrationPointType, 64 > IntegrationPointsArrayType
Definition: hexahedron_gauss_legendre_integration_points.h:191
static SizeType IntegrationPointsNumber()
Definition: hexahedron_gauss_legendre_integration_points.h:195
static const unsigned int Dimension
Definition: hexahedron_gauss_legendre_integration_points.h:187
static const IntegrationPointsArrayType & IntegrationPoints()
Definition: hexahedron_gauss_legendre_integration_points.h:200
IntegrationPoint< 3 > IntegrationPointType
Definition: hexahedron_gauss_legendre_integration_points.h:189
std::string Info() const
Definition: hexahedron_gauss_legendre_integration_points.h:271
KRATOS_CLASS_POINTER_DEFINITION(HexahedronGaussLegendreIntegrationPoints4)
std::size_t SizeType
Definition: hexahedron_gauss_legendre_integration_points.h:185
IntegrationPointType::PointType PointType
Definition: hexahedron_gauss_legendre_integration_points.h:193
Definition: hexahedron_gauss_legendre_integration_points.h:282
std::size_t SizeType
Definition: hexahedron_gauss_legendre_integration_points.h:285
std::array< IntegrationPointType, 125 > IntegrationPointsArrayType
Definition: hexahedron_gauss_legendre_integration_points.h:291
KRATOS_CLASS_POINTER_DEFINITION(HexahedronGaussLegendreIntegrationPoints5)
static const IntegrationPointsArrayType & IntegrationPoints()
Definition: hexahedron_gauss_legendre_integration_points.h:300
std::string Info() const
Definition: hexahedron_gauss_legendre_integration_points.h:432
IntegrationPointType::PointType PointType
Definition: hexahedron_gauss_legendre_integration_points.h:293
static const unsigned int Dimension
Definition: hexahedron_gauss_legendre_integration_points.h:287
IntegrationPoint< 3 > IntegrationPointType
Definition: hexahedron_gauss_legendre_integration_points.h:289
static SizeType IntegrationPointsNumber()
Definition: hexahedron_gauss_legendre_integration_points.h:295
Short class definition.
Definition: integration_point.h:52
Point class.
Definition: point.h:59
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21