15 #if !defined(KRATOS_HEXAHEDRON_GAUSS_LEGENDRE_INTEGRATION_POINTS_H_INCLUDED )
16 #define KRATOS_HEXAHEDRON_GAUSS_LEGENDRE_INTEGRATION_POINTS_H_INCLUDED
53 return s_integration_points;
58 std::stringstream buffer;
59 buffer <<
"Hexahedron Gauss-Legendre quadrature 1 ";
97 return s_integration_points;
102 std::stringstream buffer;
103 buffer <<
"Hexahedron Gauss-Legendre quadrature 2 ";
132 IntegrationPointType( -std::sqrt(3.00/5.00) , -std::sqrt(3.00/5.00), -std::sqrt(3.00/5.00), 125.00/729.00 ),
134 IntegrationPointType( std::sqrt(3.00/5.00) , -std::sqrt(3.00/5.00), -std::sqrt(3.00/5.00), 125.00/729.00 ),
140 IntegrationPointType( -std::sqrt(3.00/5.00) , std::sqrt(3.00/5.00), -std::sqrt(3.00/5.00), 125.00/729.00 ),
142 IntegrationPointType( std::sqrt(3.00/5.00) , std::sqrt(3.00/5.00), -std::sqrt(3.00/5.00), 125.00/729.00 ),
156 IntegrationPointType( -std::sqrt(3.00/5.00) , -std::sqrt(3.00/5.00), std::sqrt(3.00/5.00), 125.00/729.00 ),
158 IntegrationPointType( std::sqrt(3.00/5.00) , -std::sqrt(3.00/5.00), std::sqrt(3.00/5.00), 125.00/729.00 ),
164 IntegrationPointType( -std::sqrt(3.00/5.00) , std::sqrt(3.00/5.00), std::sqrt(3.00/5.00), 125.00/729.00 ),
166 IntegrationPointType( std::sqrt(3.00/5.00) , std::sqrt(3.00/5.00), std::sqrt(3.00/5.00), 125.00/729.00 )
168 return s_integration_points;
173 std::stringstream buffer;
174 buffer <<
"Hexadra Gauss-Legendre quadrature 3 ";
203 IntegrationPointType(-0.86113631159405257522 , -0.86113631159405257522 , -0.86113631159405257522 , 0.04209147749053145454),
204 IntegrationPointType(-0.33998104358485626480 , -0.86113631159405257522 , -0.86113631159405257522 , 0.07891151579507055098),
205 IntegrationPointType(0.33998104358485626480 , -0.86113631159405257522 , -0.86113631159405257522 , 0.07891151579507055098),
206 IntegrationPointType(0.86113631159405257522 , -0.86113631159405257522 , -0.86113631159405257522 , 0.04209147749053145454),
207 IntegrationPointType(-0.86113631159405257522 , -0.33998104358485626480 , -0.86113631159405257522 , 0.07891151579507055098),
208 IntegrationPointType(-0.33998104358485626480 , -0.33998104358485626480 , -0.86113631159405257522 , 0.14794033605678130087),
209 IntegrationPointType(0.33998104358485626480 , -0.33998104358485626480 , -0.86113631159405257522 , 0.14794033605678130087),
210 IntegrationPointType(0.86113631159405257522 , -0.33998104358485626480 , -0.86113631159405257522 , 0.07891151579507055098),
211 IntegrationPointType(-0.86113631159405257522 , 0.33998104358485626480 , -0.86113631159405257522 , 0.07891151579507055098),
212 IntegrationPointType(-0.33998104358485626480 , 0.33998104358485626480 , -0.86113631159405257522 , 0.14794033605678130087),
213 IntegrationPointType(0.33998104358485626480 , 0.33998104358485626480 , -0.86113631159405257522 , 0.14794033605678130087),
214 IntegrationPointType(0.86113631159405257522 , 0.33998104358485626480 , -0.86113631159405257522 , 0.07891151579507055098),
215 IntegrationPointType(-0.86113631159405257522 , 0.86113631159405257522 , -0.86113631159405257522 , 0.04209147749053145454),
216 IntegrationPointType(-0.33998104358485626480 , 0.86113631159405257522 , -0.86113631159405257522 , 0.07891151579507055098),
217 IntegrationPointType(0.33998104358485626480 , 0.86113631159405257522 , -0.86113631159405257522 , 0.07891151579507055098),
218 IntegrationPointType(0.86113631159405257522 , 0.86113631159405257522 , -0.86113631159405257522 , 0.04209147749053145454),
219 IntegrationPointType(-0.86113631159405257522 , -0.86113631159405257522 , -0.33998104358485626480 , 0.07891151579507055098),
220 IntegrationPointType(-0.33998104358485626480 , -0.86113631159405257522 , -0.33998104358485626480 , 0.14794033605678130087),
221 IntegrationPointType(0.33998104358485626480 , -0.86113631159405257522 , -0.33998104358485626480 , 0.14794033605678130087),
222 IntegrationPointType(0.86113631159405257522 , -0.86113631159405257522 , -0.33998104358485626480 , 0.07891151579507055098),
223 IntegrationPointType(-0.86113631159405257522 , -0.33998104358485626480 , -0.33998104358485626480 , 0.14794033605678130087),
224 IntegrationPointType(-0.33998104358485626480 , -0.33998104358485626480 , -0.33998104358485626480 , 0.27735296695391298990),
225 IntegrationPointType(0.33998104358485626480 , -0.33998104358485626480 , -0.33998104358485626480 , 0.27735296695391298990),
226 IntegrationPointType(0.86113631159405257522 , -0.33998104358485626480 , -0.33998104358485626480 , 0.14794033605678130087),
227 IntegrationPointType(-0.86113631159405257522 , 0.33998104358485626480 , -0.33998104358485626480 , 0.14794033605678130087),
228 IntegrationPointType(-0.33998104358485626480 , 0.33998104358485626480 , -0.33998104358485626480 , 0.27735296695391298990),
229 IntegrationPointType(0.33998104358485626480 , 0.33998104358485626480 , -0.33998104358485626480 , 0.27735296695391298990),
230 IntegrationPointType(0.86113631159405257522 , 0.33998104358485626480 , -0.33998104358485626480 , 0.14794033605678130087),
231 IntegrationPointType(-0.86113631159405257522 , 0.86113631159405257522 , -0.33998104358485626480 , 0.07891151579507055098),
232 IntegrationPointType(-0.33998104358485626480 , 0.86113631159405257522 , -0.33998104358485626480 , 0.14794033605678130087),
233 IntegrationPointType(0.33998104358485626480 , 0.86113631159405257522 , -0.33998104358485626480 , 0.14794033605678130087),
234 IntegrationPointType(0.86113631159405257522 , 0.86113631159405257522 , -0.33998104358485626480 , 0.07891151579507055098),
235 IntegrationPointType(-0.86113631159405257522 , -0.86113631159405257522 , 0.33998104358485626480 , 0.07891151579507055098),
236 IntegrationPointType(-0.33998104358485626480 , -0.86113631159405257522 , 0.33998104358485626480 , 0.14794033605678130087),
237 IntegrationPointType(0.33998104358485626480 , -0.86113631159405257522 , 0.33998104358485626480 , 0.14794033605678130087),
238 IntegrationPointType(0.86113631159405257522 , -0.86113631159405257522 , 0.33998104358485626480 , 0.07891151579507055098),
239 IntegrationPointType(-0.86113631159405257522 , -0.33998104358485626480 , 0.33998104358485626480 , 0.14794033605678130087),
240 IntegrationPointType(-0.33998104358485626480 , -0.33998104358485626480 , 0.33998104358485626480 , 0.27735296695391298990),
241 IntegrationPointType(0.33998104358485626480 , -0.33998104358485626480 , 0.33998104358485626480 , 0.27735296695391298990),
242 IntegrationPointType(0.86113631159405257522 , -0.33998104358485626480 , 0.33998104358485626480 , 0.14794033605678130087),
243 IntegrationPointType(-0.86113631159405257522 , 0.33998104358485626480 , 0.33998104358485626480 , 0.14794033605678130087),
244 IntegrationPointType(-0.33998104358485626480 , 0.33998104358485626480 , 0.33998104358485626480 , 0.27735296695391298990),
245 IntegrationPointType(0.33998104358485626480 , 0.33998104358485626480 , 0.33998104358485626480 , 0.27735296695391298990),
246 IntegrationPointType(0.86113631159405257522 , 0.33998104358485626480 , 0.33998104358485626480 , 0.14794033605678130087),
247 IntegrationPointType(-0.86113631159405257522 , 0.86113631159405257522 , 0.33998104358485626480 , 0.07891151579507055098),
248 IntegrationPointType(-0.33998104358485626480 , 0.86113631159405257522 , 0.33998104358485626480 , 0.14794033605678130087),
249 IntegrationPointType(0.33998104358485626480 , 0.86113631159405257522 , 0.33998104358485626480 , 0.14794033605678130087),
250 IntegrationPointType(0.86113631159405257522 , 0.86113631159405257522 , 0.33998104358485626480 , 0.07891151579507055098),
251 IntegrationPointType(-0.86113631159405257522 , -0.86113631159405257522 , 0.86113631159405257522 , 0.04209147749053145454),
252 IntegrationPointType(-0.33998104358485626480 , -0.86113631159405257522 , 0.86113631159405257522 , 0.07891151579507055098),
253 IntegrationPointType(0.33998104358485626480 , -0.86113631159405257522 , 0.86113631159405257522 , 0.07891151579507055098),
254 IntegrationPointType(0.86113631159405257522 , -0.86113631159405257522 , 0.86113631159405257522 , 0.04209147749053145454),
255 IntegrationPointType(-0.86113631159405257522 , -0.33998104358485626480 , 0.86113631159405257522 , 0.07891151579507055098),
256 IntegrationPointType(-0.33998104358485626480 , -0.33998104358485626480 , 0.86113631159405257522 , 0.14794033605678130087),
257 IntegrationPointType(0.33998104358485626480 , -0.33998104358485626480 , 0.86113631159405257522 , 0.14794033605678130087),
258 IntegrationPointType(0.86113631159405257522 , -0.33998104358485626480 , 0.86113631159405257522 , 0.07891151579507055098),
259 IntegrationPointType(-0.86113631159405257522 , 0.33998104358485626480 , 0.86113631159405257522 , 0.07891151579507055098),
260 IntegrationPointType(-0.33998104358485626480 , 0.33998104358485626480 , 0.86113631159405257522 , 0.14794033605678130087),
261 IntegrationPointType(0.33998104358485626480 , 0.33998104358485626480 , 0.86113631159405257522 , 0.14794033605678130087),
262 IntegrationPointType(0.86113631159405257522 , 0.33998104358485626480 , 0.86113631159405257522 , 0.07891151579507055098),
263 IntegrationPointType(-0.86113631159405257522 , 0.86113631159405257522 , 0.86113631159405257522 , 0.04209147749053145454),
264 IntegrationPointType(-0.33998104358485626480 , 0.86113631159405257522 , 0.86113631159405257522 , 0.07891151579507055098),
265 IntegrationPointType(0.33998104358485626480 , 0.86113631159405257522 , 0.86113631159405257522 , 0.07891151579507055098),
266 IntegrationPointType(0.86113631159405257522 , 0.86113631159405257522 , 0.86113631159405257522 , 0.04209147749053145454)
268 return s_integration_points;
273 std::stringstream buffer;
274 buffer <<
"Hexadra Gauss-Legendre quadrature 4 ";
303 IntegrationPointType(-0.90617984593866399280 , -0.90617984593866399280 , -0.90617984593866399280 , 0.013299736420632648092),
304 IntegrationPointType(-0.53846931010568309104 , -0.90617984593866399280 , -0.90617984593866399280 , 0.026867508765371842524),
305 IntegrationPointType(0 , -0.90617984593866399280 , -0.90617984593866399280 , 0.031934207352848290676),
306 IntegrationPointType(0.53846931010568309104 , -0.90617984593866399280 , -0.90617984593866399280 , 0.026867508765371842524),
307 IntegrationPointType(0.90617984593866399280 , -0.90617984593866399280 , -0.90617984593866399280 , 0.013299736420632648092),
308 IntegrationPointType(-0.90617984593866399280 , -0.53846931010568309104 , -0.90617984593866399280 , 0.026867508765371842524),
309 IntegrationPointType(-0.53846931010568309104 , -0.53846931010568309104 , -0.90617984593866399280 , 0.05427649123462815748),
310 IntegrationPointType(0 , -0.53846931010568309104 , -0.90617984593866399280 , 0.06451200000000000000),
311 IntegrationPointType(0.53846931010568309104 , -0.53846931010568309104 , -0.90617984593866399280 , 0.05427649123462815748),
312 IntegrationPointType(0.90617984593866399280 , -0.53846931010568309104 , -0.90617984593866399280 , 0.026867508765371842524),
313 IntegrationPointType(-0.90617984593866399280 , 0 , -0.90617984593866399280 , 0.031934207352848290676),
314 IntegrationPointType(-0.53846931010568309104 , 0 , -0.90617984593866399280 , 0.06451200000000000000),
316 IntegrationPointType(0.53846931010568309104 , 0 , -0.90617984593866399280 , 0.06451200000000000000),
317 IntegrationPointType(0.90617984593866399280 , 0 , -0.90617984593866399280 , 0.031934207352848290676),
318 IntegrationPointType(-0.90617984593866399280 , 0.53846931010568309104 , -0.90617984593866399280 , 0.026867508765371842524),
319 IntegrationPointType(-0.53846931010568309104 , 0.53846931010568309104 , -0.90617984593866399280 , 0.05427649123462815748),
320 IntegrationPointType(0 , 0.53846931010568309104 , -0.90617984593866399280 , 0.06451200000000000000),
321 IntegrationPointType(0.53846931010568309104 , 0.53846931010568309104 , -0.90617984593866399280 , 0.05427649123462815748),
322 IntegrationPointType(0.90617984593866399280 , 0.53846931010568309104 , -0.90617984593866399280 , 0.026867508765371842524),
323 IntegrationPointType(-0.90617984593866399280 , 0.90617984593866399280 , -0.90617984593866399280 , 0.013299736420632648092),
324 IntegrationPointType(-0.53846931010568309104 , 0.90617984593866399280 , -0.90617984593866399280 , 0.026867508765371842524),
325 IntegrationPointType(0 , 0.90617984593866399280 , -0.90617984593866399280 , 0.031934207352848290676),
326 IntegrationPointType(0.53846931010568309104 , 0.90617984593866399280 , -0.90617984593866399280 , 0.026867508765371842524),
327 IntegrationPointType(0.90617984593866399280 , 0.90617984593866399280 , -0.90617984593866399280 , 0.013299736420632648092),
328 IntegrationPointType(-0.90617984593866399280 , -0.90617984593866399280 , -0.53846931010568309104 , 0.026867508765371842524),
329 IntegrationPointType(-0.53846931010568309104 , -0.90617984593866399280 , -0.53846931010568309104 , 0.05427649123462815748),
330 IntegrationPointType(0 , -0.90617984593866399280 , -0.53846931010568309104 , 0.06451200000000000000),
331 IntegrationPointType(0.53846931010568309104 , -0.90617984593866399280 , -0.53846931010568309104 , 0.05427649123462815748),
332 IntegrationPointType(0.90617984593866399280 , -0.90617984593866399280 , -0.53846931010568309104 , 0.026867508765371842524),
333 IntegrationPointType(-0.90617984593866399280 , -0.53846931010568309104 , -0.53846931010568309104 , 0.05427649123462815748),
334 IntegrationPointType(-0.53846931010568309104 , -0.53846931010568309104 , -0.53846931010568309104 , 0.10964684245453881967),
335 IntegrationPointType(0 , -0.53846931010568309104 , -0.53846931010568309104 , 0.13032414106964827997),
336 IntegrationPointType(0.53846931010568309104 , -0.53846931010568309104 , -0.53846931010568309104 , 0.10964684245453881967),
337 IntegrationPointType(0.90617984593866399280 , -0.53846931010568309104 , -0.53846931010568309104 , 0.05427649123462815748),
338 IntegrationPointType(-0.90617984593866399280 , 0 , -0.53846931010568309104 , 0.06451200000000000000),
339 IntegrationPointType(-0.53846931010568309104 , 0 , -0.53846931010568309104 , 0.13032414106964827997),
341 IntegrationPointType(0.53846931010568309104 , 0 , -0.53846931010568309104 , 0.13032414106964827997),
342 IntegrationPointType(0.90617984593866399280 , 0 , -0.53846931010568309104 , 0.06451200000000000000),
343 IntegrationPointType(-0.90617984593866399280 , 0.53846931010568309104 , -0.53846931010568309104 , 0.05427649123462815748),
344 IntegrationPointType(-0.53846931010568309104 , 0.53846931010568309104 , -0.53846931010568309104 , 0.10964684245453881967),
345 IntegrationPointType(0 , 0.53846931010568309104 , -0.53846931010568309104 , 0.13032414106964827997),
346 IntegrationPointType(0.53846931010568309104 , 0.53846931010568309104 , -0.53846931010568309104 , 0.10964684245453881967),
347 IntegrationPointType(0.90617984593866399280 , 0.53846931010568309104 , -0.53846931010568309104 , 0.05427649123462815748),
348 IntegrationPointType(-0.90617984593866399280 , 0.90617984593866399280 , -0.53846931010568309104 , 0.026867508765371842524),
349 IntegrationPointType(-0.53846931010568309104 , 0.90617984593866399280 , -0.53846931010568309104 , 0.05427649123462815748),
350 IntegrationPointType(0 , 0.90617984593866399280 , -0.53846931010568309104 , 0.06451200000000000000),
351 IntegrationPointType(0.53846931010568309104 , 0.90617984593866399280 , -0.53846931010568309104 , 0.05427649123462815748),
352 IntegrationPointType(0.90617984593866399280 , 0.90617984593866399280 , -0.53846931010568309104 , 0.026867508765371842524),
353 IntegrationPointType(-0.90617984593866399280 , -0.90617984593866399280 , 0 , 0.031934207352848290676),
354 IntegrationPointType(-0.53846931010568309104 , -0.90617984593866399280 , 0 , 0.06451200000000000000),
356 IntegrationPointType(0.53846931010568309104 , -0.90617984593866399280 , 0 , 0.06451200000000000000),
357 IntegrationPointType(0.90617984593866399280 , -0.90617984593866399280 , 0 , 0.031934207352848290676),
358 IntegrationPointType(-0.90617984593866399280 , -0.53846931010568309104 , 0 , 0.06451200000000000000),
359 IntegrationPointType(-0.53846931010568309104 , -0.53846931010568309104 , 0 , 0.13032414106964827997),
361 IntegrationPointType(0.53846931010568309104 , -0.53846931010568309104 , 0 , 0.13032414106964827997),
362 IntegrationPointType(0.90617984593866399280 , -0.53846931010568309104 , 0 , 0.06451200000000000000),
368 IntegrationPointType(-0.90617984593866399280 , 0.53846931010568309104 , 0 , 0.06451200000000000000),
369 IntegrationPointType(-0.53846931010568309104 , 0.53846931010568309104 , 0 , 0.13032414106964827997),
371 IntegrationPointType(0.53846931010568309104 , 0.53846931010568309104 , 0 , 0.13032414106964827997),
372 IntegrationPointType(0.90617984593866399280 , 0.53846931010568309104 , 0 , 0.06451200000000000000),
373 IntegrationPointType(-0.90617984593866399280 , 0.90617984593866399280 , 0 , 0.031934207352848290676),
374 IntegrationPointType(-0.53846931010568309104 , 0.90617984593866399280 , 0 , 0.06451200000000000000),
376 IntegrationPointType(0.53846931010568309104 , 0.90617984593866399280 , 0 , 0.06451200000000000000),
377 IntegrationPointType(0.90617984593866399280 , 0.90617984593866399280 , 0 , 0.031934207352848290676),
378 IntegrationPointType(-0.90617984593866399280 , -0.90617984593866399280 , 0.53846931010568309104 , 0.026867508765371842524),
379 IntegrationPointType(-0.53846931010568309104 , -0.90617984593866399280 , 0.53846931010568309104 , 0.05427649123462815748),
380 IntegrationPointType(0 , -0.90617984593866399280 , 0.53846931010568309104 , 0.06451200000000000000),
381 IntegrationPointType(0.53846931010568309104 , -0.90617984593866399280 , 0.53846931010568309104 , 0.05427649123462815748),
382 IntegrationPointType(0.90617984593866399280 , -0.90617984593866399280 , 0.53846931010568309104 , 0.026867508765371842524),
383 IntegrationPointType(-0.90617984593866399280 , -0.53846931010568309104 , 0.53846931010568309104 , 0.05427649123462815748),
384 IntegrationPointType(-0.53846931010568309104 , -0.53846931010568309104 , 0.53846931010568309104 , 0.10964684245453881967),
385 IntegrationPointType(0 , -0.53846931010568309104 , 0.53846931010568309104 , 0.13032414106964827997),
386 IntegrationPointType(0.53846931010568309104 , -0.53846931010568309104 , 0.53846931010568309104 , 0.10964684245453881967),
387 IntegrationPointType(0.90617984593866399280 , -0.53846931010568309104 , 0.53846931010568309104 , 0.05427649123462815748),
388 IntegrationPointType(-0.90617984593866399280 , 0 , 0.53846931010568309104 , 0.06451200000000000000),
389 IntegrationPointType(-0.53846931010568309104 , 0 , 0.53846931010568309104 , 0.13032414106964827997),
391 IntegrationPointType(0.53846931010568309104 , 0 , 0.53846931010568309104 , 0.13032414106964827997),
392 IntegrationPointType(0.90617984593866399280 , 0 , 0.53846931010568309104 , 0.06451200000000000000),
393 IntegrationPointType(-0.90617984593866399280 , 0.53846931010568309104 , 0.53846931010568309104 , 0.05427649123462815748),
394 IntegrationPointType(-0.53846931010568309104 , 0.53846931010568309104 , 0.53846931010568309104 , 0.10964684245453881967),
395 IntegrationPointType(0 , 0.53846931010568309104 , 0.53846931010568309104 , 0.13032414106964827997),
396 IntegrationPointType(0.53846931010568309104 , 0.53846931010568309104 , 0.53846931010568309104 , 0.10964684245453881967),
397 IntegrationPointType(0.90617984593866399280 , 0.53846931010568309104 , 0.53846931010568309104 , 0.05427649123462815748),
398 IntegrationPointType(-0.90617984593866399280 , 0.90617984593866399280 , 0.53846931010568309104 , 0.026867508765371842524),
399 IntegrationPointType(-0.53846931010568309104 , 0.90617984593866399280 , 0.53846931010568309104 , 0.05427649123462815748),
400 IntegrationPointType(0 , 0.90617984593866399280 , 0.53846931010568309104 , 0.06451200000000000000),
401 IntegrationPointType(0.53846931010568309104 , 0.90617984593866399280 , 0.53846931010568309104 , 0.05427649123462815748),
402 IntegrationPointType(0.90617984593866399280 , 0.90617984593866399280 , 0.53846931010568309104 , 0.026867508765371842524),
403 IntegrationPointType(-0.90617984593866399280 , -0.90617984593866399280 , 0.90617984593866399280 , 0.013299736420632648092),
404 IntegrationPointType(-0.53846931010568309104 , -0.90617984593866399280 , 0.90617984593866399280 , 0.026867508765371842524),
405 IntegrationPointType(0 , -0.90617984593866399280 , 0.90617984593866399280 , 0.031934207352848290676),
406 IntegrationPointType(0.53846931010568309104 , -0.90617984593866399280 , 0.90617984593866399280 , 0.026867508765371842524),
407 IntegrationPointType(0.90617984593866399280 , -0.90617984593866399280 , 0.90617984593866399280 , 0.013299736420632648092),
408 IntegrationPointType(-0.90617984593866399280 , -0.53846931010568309104 , 0.90617984593866399280 , 0.026867508765371842524),
409 IntegrationPointType(-0.53846931010568309104 , -0.53846931010568309104 , 0.90617984593866399280 , 0.05427649123462815748),
410 IntegrationPointType(0 , -0.53846931010568309104 , 0.90617984593866399280 , 0.06451200000000000000),
411 IntegrationPointType(0.53846931010568309104 , -0.53846931010568309104 , 0.90617984593866399280 , 0.05427649123462815748),
412 IntegrationPointType(0.90617984593866399280 , -0.53846931010568309104 , 0.90617984593866399280 , 0.026867508765371842524),
413 IntegrationPointType(-0.90617984593866399280 , 0 , 0.90617984593866399280 , 0.031934207352848290676),
414 IntegrationPointType(-0.53846931010568309104 , 0 , 0.90617984593866399280 , 0.06451200000000000000),
416 IntegrationPointType(0.53846931010568309104 , 0 , 0.90617984593866399280 , 0.06451200000000000000),
417 IntegrationPointType(0.90617984593866399280 , 0 , 0.90617984593866399280 , 0.031934207352848290676),
418 IntegrationPointType(-0.90617984593866399280 , 0.53846931010568309104 , 0.90617984593866399280 , 0.026867508765371842524),
419 IntegrationPointType(-0.53846931010568309104 , 0.53846931010568309104 , 0.90617984593866399280 , 0.05427649123462815748),
420 IntegrationPointType(0 , 0.53846931010568309104 , 0.90617984593866399280 , 0.06451200000000000000),
421 IntegrationPointType(0.53846931010568309104 , 0.53846931010568309104 , 0.90617984593866399280 , 0.05427649123462815748),
422 IntegrationPointType(0.90617984593866399280 , 0.53846931010568309104 , 0.90617984593866399280 , 0.026867508765371842524),
423 IntegrationPointType(-0.90617984593866399280 , 0.90617984593866399280 , 0.90617984593866399280 , 0.013299736420632648092),
424 IntegrationPointType(-0.53846931010568309104 , 0.90617984593866399280 , 0.90617984593866399280 , 0.026867508765371842524),
425 IntegrationPointType(0 , 0.90617984593866399280 , 0.90617984593866399280 , 0.031934207352848290676),
426 IntegrationPointType(0.53846931010568309104 , 0.90617984593866399280 , 0.90617984593866399280 , 0.026867508765371842524),
427 IntegrationPointType(0.90617984593866399280 , 0.90617984593866399280 , 0.90617984593866399280 , 0.013299736420632648092)
429 return s_integration_points;
434 std::stringstream buffer;
435 buffer <<
"Hexadra Gauss-Legendre quadrature 5 ";
Definition: hexahedron_gauss_legendre_integration_points.h:30
static const IntegrationPointsArrayType & IntegrationPoints()
Definition: hexahedron_gauss_legendre_integration_points.h:48
std::string Info() const
Definition: hexahedron_gauss_legendre_integration_points.h:56
std::size_t SizeType
Definition: hexahedron_gauss_legendre_integration_points.h:33
static const unsigned int Dimension
Definition: hexahedron_gauss_legendre_integration_points.h:35
IntegrationPointType::PointType PointType
Definition: hexahedron_gauss_legendre_integration_points.h:41
static SizeType IntegrationPointsNumber()
Definition: hexahedron_gauss_legendre_integration_points.h:43
KRATOS_CLASS_POINTER_DEFINITION(HexahedronGaussLegendreIntegrationPoints1)
IntegrationPoint< 3 > IntegrationPointType
Definition: hexahedron_gauss_legendre_integration_points.h:37
std::array< IntegrationPointType, 1 > IntegrationPointsArrayType
Definition: hexahedron_gauss_legendre_integration_points.h:39
Definition: hexahedron_gauss_legendre_integration_points.h:67
std::size_t SizeType
Definition: hexahedron_gauss_legendre_integration_points.h:70
IntegrationPoint< 3 > IntegrationPointType
Definition: hexahedron_gauss_legendre_integration_points.h:74
static const unsigned int Dimension
Definition: hexahedron_gauss_legendre_integration_points.h:72
KRATOS_CLASS_POINTER_DEFINITION(HexahedronGaussLegendreIntegrationPoints2)
static SizeType IntegrationPointsNumber()
Definition: hexahedron_gauss_legendre_integration_points.h:80
std::array< IntegrationPointType, 8 > IntegrationPointsArrayType
Definition: hexahedron_gauss_legendre_integration_points.h:76
std::string Info() const
Definition: hexahedron_gauss_legendre_integration_points.h:100
static const IntegrationPointsArrayType & IntegrationPoints()
Definition: hexahedron_gauss_legendre_integration_points.h:85
IntegrationPointType::PointType PointType
Definition: hexahedron_gauss_legendre_integration_points.h:78
Definition: hexahedron_gauss_legendre_integration_points.h:111
static const unsigned int Dimension
Definition: hexahedron_gauss_legendre_integration_points.h:116
static SizeType IntegrationPointsNumber()
Definition: hexahedron_gauss_legendre_integration_points.h:124
std::array< IntegrationPointType, 27 > IntegrationPointsArrayType
Definition: hexahedron_gauss_legendre_integration_points.h:120
std::string Info() const
Definition: hexahedron_gauss_legendre_integration_points.h:171
static const IntegrationPointsArrayType & IntegrationPoints()
Definition: hexahedron_gauss_legendre_integration_points.h:129
IntegrationPointType::PointType PointType
Definition: hexahedron_gauss_legendre_integration_points.h:122
std::size_t SizeType
Definition: hexahedron_gauss_legendre_integration_points.h:114
IntegrationPoint< 3 > IntegrationPointType
Definition: hexahedron_gauss_legendre_integration_points.h:118
KRATOS_CLASS_POINTER_DEFINITION(HexahedronGaussLegendreIntegrationPoints3)
Definition: hexahedron_gauss_legendre_integration_points.h:182
std::array< IntegrationPointType, 64 > IntegrationPointsArrayType
Definition: hexahedron_gauss_legendre_integration_points.h:191
static SizeType IntegrationPointsNumber()
Definition: hexahedron_gauss_legendre_integration_points.h:195
static const unsigned int Dimension
Definition: hexahedron_gauss_legendre_integration_points.h:187
static const IntegrationPointsArrayType & IntegrationPoints()
Definition: hexahedron_gauss_legendre_integration_points.h:200
IntegrationPoint< 3 > IntegrationPointType
Definition: hexahedron_gauss_legendre_integration_points.h:189
std::string Info() const
Definition: hexahedron_gauss_legendre_integration_points.h:271
KRATOS_CLASS_POINTER_DEFINITION(HexahedronGaussLegendreIntegrationPoints4)
std::size_t SizeType
Definition: hexahedron_gauss_legendre_integration_points.h:185
IntegrationPointType::PointType PointType
Definition: hexahedron_gauss_legendre_integration_points.h:193
Definition: hexahedron_gauss_legendre_integration_points.h:282
std::size_t SizeType
Definition: hexahedron_gauss_legendre_integration_points.h:285
std::array< IntegrationPointType, 125 > IntegrationPointsArrayType
Definition: hexahedron_gauss_legendre_integration_points.h:291
KRATOS_CLASS_POINTER_DEFINITION(HexahedronGaussLegendreIntegrationPoints5)
static const IntegrationPointsArrayType & IntegrationPoints()
Definition: hexahedron_gauss_legendre_integration_points.h:300
std::string Info() const
Definition: hexahedron_gauss_legendre_integration_points.h:432
IntegrationPointType::PointType PointType
Definition: hexahedron_gauss_legendre_integration_points.h:293
static const unsigned int Dimension
Definition: hexahedron_gauss_legendre_integration_points.h:287
IntegrationPoint< 3 > IntegrationPointType
Definition: hexahedron_gauss_legendre_integration_points.h:289
static SizeType IntegrationPointsNumber()
Definition: hexahedron_gauss_legendre_integration_points.h:295
Short class definition.
Definition: integration_point.h:52
Point class.
Definition: point.h:59
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21