KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
Kratos::MathUtils< TDataType > Member List

This is the complete list of members for Kratos::MathUtils< TDataType >, including all inherited members.

AddMatrix(TMatrixType1 &rDestination, const TMatrixType2 &rInputMatrix, const IndexType InitialRow, const IndexType InitialCol)Kratos::MathUtils< TDataType >inlinestatic
AddVector(TVectorType1 &rDestination, const TVectorType2 &rInputVector, const IndexType InitialIndex)Kratos::MathUtils< TDataType >inlinestatic
BDBtProductOperation(TMatrixType1 &rA, const TMatrixType2 &rD, const TMatrixType3 &rB)Kratos::MathUtils< TDataType >inlinestatic
BtDBProductOperation(TMatrixType1 &rA, const TMatrixType2 &rD, const TMatrixType3 &rB)Kratos::MathUtils< TDataType >inlinestatic
CalculateExponentialOfMatrix(const TMatrixType &rMatrix, TMatrixType &rExponentialMatrix, const double Tolerance=1000.0 *ZeroTolerance, const SizeType MaxTerms=200)Kratos::MathUtils< TDataType >inlinestatic
CheckConditionNumber(const TMatrix1 &rInputMatrix, TMatrix2 &rInvertedMatrix, const double Tolerance=std::numeric_limits< double >::epsilon(), const bool ThrowError=true)Kratos::MathUtils< TDataType >inlinestatic
CheckIsAlias(T1 &value1, T2 &value2)Kratos::MathUtils< TDataType >inlinestatic
CheckIsAlias(T1 &value1, T2 &value2)Kratos::MathUtils< TDataType >inlinestatic
Cofactor(const TMatrixType &rMat, IndexType i, IndexType j)Kratos::MathUtils< TDataType >inlinestatic
CofactorMatrix(const TMatrixType &rMat)Kratos::MathUtils< TDataType >inlinestatic
CrossProduct(const T &a, const T &b)Kratos::MathUtils< TDataType >inlinestatic
CrossProduct(T1 &c, const T2 &a, const T3 &b)Kratos::MathUtils< TDataType >inlinestatic
DegreesToRadians(double AngleInDegrees)Kratos::MathUtils< TDataType >inlinestatic
Det(const TMatrixType &rA)Kratos::MathUtils< TDataType >inlinestatic
Det2(const TMatrixType &rA)Kratos::MathUtils< TDataType >inlinestatic
Det3(const TMatrixType &rA)Kratos::MathUtils< TDataType >inlinestatic
Det4(const TMatrixType &rA)Kratos::MathUtils< TDataType >inlinestatic
Dot(const Vector &rFirstVector, const Vector &rSecondVector)Kratos::MathUtils< TDataType >inlinestatic
Dot3(const Vector &a, const Vector &b)Kratos::MathUtils< TDataType >inlinestatic
ExpandAndAddReducedMatrix(MatrixType &rDestination, const MatrixType &rReducedMatrix, const SizeType Dimension)Kratos::MathUtils< TDataType >inlinestatic
ExpandReducedMatrix(MatrixType &rDestination, const MatrixType &rReducedMatrix, const SizeType Dimension)Kratos::MathUtils< TDataType >inlinestatic
Factorial(const TIntegerType Number)Kratos::MathUtils< TDataType >inlinestatic
GaussSeidelEigenSystem(const TMatrixType1 &rA, TMatrixType2 &rEigenVectorsMatrix, TMatrixType2 &rEigenValuesMatrix, const double Tolerance=1.0e-18, const SizeType MaxIterations=20)Kratos::MathUtils< TDataType >inlinestatic
GeneralizedDet(const TMatrixType &rA)Kratos::MathUtils< TDataType >inlinestatic
GeneralizedInvertMatrix(const TMatrix1 &rInputMatrix, TMatrix2 &rInvertedMatrix, double &rInputMatrixDet, const double Tolerance=ZeroTolerance)Kratos::MathUtils< TDataType >inlinestatic
GetZeroTolerance()Kratos::MathUtils< TDataType >inlinestatic
Heron(double a, double b, double c)Kratos::MathUtils< TDataType >inlinestatic
IndexType typedefKratos::MathUtils< TDataType >
IndirectArrayType typedefKratos::MathUtils< TDataType >
InvertMatrix(const BoundedMatrix< double, TDim, TDim > &rInputMatrix, double &rInputMatrixDet, const double Tolerance=ZeroTolerance)Kratos::MathUtils< TDataType >inlinestatic
InvertMatrix(const TMatrix1 &rInputMatrix, TMatrix2 &rInvertedMatrix, double &rInputMatrixDet, const double Tolerance=ZeroTolerance)Kratos::MathUtils< TDataType >inlinestatic
InvertMatrix2(const TMatrix1 &rInputMatrix, TMatrix2 &rInvertedMatrix, double &rInputMatrixDet)Kratos::MathUtils< TDataType >inlinestatic
InvertMatrix3(const TMatrix1 &rInputMatrix, TMatrix2 &rInvertedMatrix, double &rInputMatrixDet)Kratos::MathUtils< TDataType >inlinestatic
InvertMatrix4(const TMatrix1 &rInputMatrix, TMatrix2 &rInvertedMatrix, double &rInputMatrixDet)Kratos::MathUtils< TDataType >inlinestatic
KRATOS_DEPRECATED_MESSAGE("Please use GaussSeidelEigenSystem() instead. Note the resulting EigenVectors matrix is transposed respect GaussSeidelEigenSystem()") static inline bool EigenSystem(const BoundedMatrix< doubleKratos::MathUtils< TDataType >
MatrixSquareRoot(const TMatrixType1 &rA, TMatrixType2 &rMatrixSquareRoot, const double Tolerance=1.0e-18, const SizeType MaxIterations=20)Kratos::MathUtils< TDataType >inline
MatrixType typedefKratos::MathUtils< TDataType >
MaxIterationsKratos::MathUtils< TDataType >
Norm(const Vector &a)Kratos::MathUtils< TDataType >inlinestatic
Norm3(const TVectorType &a)Kratos::MathUtils< TDataType >inlinestatic
OrthonormalBasis(const T1 &c, T2 &a, T3 &b, const IndexType Type=0)Kratos::MathUtils< TDataType >inlinestatic
OrthonormalBasisFrisvad(const T1 &c, T2 &a, T3 &b)Kratos::MathUtils< TDataType >inlinestatic
OrthonormalBasisHughesMoeller(const T1 &c, T2 &a, T3 &b)Kratos::MathUtils< TDataType >inlinestatic
OrthonormalBasisNaive(const T1 &c, T2 &a, T3 &b)Kratos::MathUtils< TDataType >inlinestatic
rAKratos::MathUtils< TDataType >
rEigenValuesMatrixKratos::MathUtils< TDataType >
rEigenVectorsMatrixKratos::MathUtils< TDataType >
Sign(const double &ThisDataType)Kratos::MathUtils< TDataType >inlinestatic
SizeType typedefKratos::MathUtils< TDataType >
Solve(MatrixType A, VectorType &rX, const VectorType &rB)Kratos::MathUtils< TDataType >static
StableNorm(const Vector &a)Kratos::MathUtils< TDataType >inlinestatic
StrainTensorToVector(const TMatrixType &rStrainTensor, SizeType rSize=0)Kratos::MathUtils< TDataType >inlinestatic
StrainVectorToTensor(const TVector &rStrainVector)Kratos::MathUtils< TDataType >inlinestatic
StressTensorToVector(const TMatrixType &rStressTensor, SizeType rSize=0)Kratos::MathUtils< TDataType >inlinestatic
StressVectorToTensor(const TVector &rStressVector)Kratos::MathUtils< TDataType >inlinestatic
SubtractMatrix(MatrixType &rDestination, const MatrixType &rInputMatrix, const IndexType InitialRow, const IndexType InitialCol)Kratos::MathUtils< TDataType >inlinestatic
SymmetricTensorToVector(const TMatrixType &rTensor, SizeType rSize=0)Kratos::MathUtils< TDataType >inlinestatic
TDimKratos::MathUtils< TDataType >
TensorProduct3(const Vector &a, const Vector &b)Kratos::MathUtils< TDataType >inlinestatic
ToleranceKratos::MathUtils< TDataType >
UnitCrossProduct(T1 &c, const T2 &a, const T3 &b)Kratos::MathUtils< TDataType >inlinestatic
VecAdd(Vector &rX, const double coeff, Vector &rY)Kratos::MathUtils< TDataType >inlinestatic
VectorsAngle(const T1 &rV1, const T2 &rV2)Kratos::MathUtils< TDataType >inlinestatic
VectorToSymmetricTensor(const TVector &rVector)Kratos::MathUtils< TDataType >inlinestatic
VectorType typedefKratos::MathUtils< TDataType >
WriteMatrix(MatrixType &rDestination, const MatrixType &rInputMatrix, const IndexType InitialRow, const IndexType InitialCol)Kratos::MathUtils< TDataType >inlinestatic
ZeroToleranceKratos::MathUtils< TDataType >static