KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
This is the complete list of members for Kratos::MathUtils< TDataType >, including all inherited members.
AddMatrix(TMatrixType1 &rDestination, const TMatrixType2 &rInputMatrix, const IndexType InitialRow, const IndexType InitialCol) | Kratos::MathUtils< TDataType > | inlinestatic |
AddVector(TVectorType1 &rDestination, const TVectorType2 &rInputVector, const IndexType InitialIndex) | Kratos::MathUtils< TDataType > | inlinestatic |
BDBtProductOperation(TMatrixType1 &rA, const TMatrixType2 &rD, const TMatrixType3 &rB) | Kratos::MathUtils< TDataType > | inlinestatic |
BtDBProductOperation(TMatrixType1 &rA, const TMatrixType2 &rD, const TMatrixType3 &rB) | Kratos::MathUtils< TDataType > | inlinestatic |
CalculateExponentialOfMatrix(const TMatrixType &rMatrix, TMatrixType &rExponentialMatrix, const double Tolerance=1000.0 *ZeroTolerance, const SizeType MaxTerms=200) | Kratos::MathUtils< TDataType > | inlinestatic |
CheckConditionNumber(const TMatrix1 &rInputMatrix, TMatrix2 &rInvertedMatrix, const double Tolerance=std::numeric_limits< double >::epsilon(), const bool ThrowError=true) | Kratos::MathUtils< TDataType > | inlinestatic |
CheckIsAlias(T1 &value1, T2 &value2) | Kratos::MathUtils< TDataType > | inlinestatic |
CheckIsAlias(T1 &value1, T2 &value2) | Kratos::MathUtils< TDataType > | inlinestatic |
Cofactor(const TMatrixType &rMat, IndexType i, IndexType j) | Kratos::MathUtils< TDataType > | inlinestatic |
CofactorMatrix(const TMatrixType &rMat) | Kratos::MathUtils< TDataType > | inlinestatic |
CrossProduct(const T &a, const T &b) | Kratos::MathUtils< TDataType > | inlinestatic |
CrossProduct(T1 &c, const T2 &a, const T3 &b) | Kratos::MathUtils< TDataType > | inlinestatic |
DegreesToRadians(double AngleInDegrees) | Kratos::MathUtils< TDataType > | inlinestatic |
Det(const TMatrixType &rA) | Kratos::MathUtils< TDataType > | inlinestatic |
Det2(const TMatrixType &rA) | Kratos::MathUtils< TDataType > | inlinestatic |
Det3(const TMatrixType &rA) | Kratos::MathUtils< TDataType > | inlinestatic |
Det4(const TMatrixType &rA) | Kratos::MathUtils< TDataType > | inlinestatic |
Dot(const Vector &rFirstVector, const Vector &rSecondVector) | Kratos::MathUtils< TDataType > | inlinestatic |
Dot3(const Vector &a, const Vector &b) | Kratos::MathUtils< TDataType > | inlinestatic |
ExpandAndAddReducedMatrix(MatrixType &rDestination, const MatrixType &rReducedMatrix, const SizeType Dimension) | Kratos::MathUtils< TDataType > | inlinestatic |
ExpandReducedMatrix(MatrixType &rDestination, const MatrixType &rReducedMatrix, const SizeType Dimension) | Kratos::MathUtils< TDataType > | inlinestatic |
Factorial(const TIntegerType Number) | Kratos::MathUtils< TDataType > | inlinestatic |
GaussSeidelEigenSystem(const TMatrixType1 &rA, TMatrixType2 &rEigenVectorsMatrix, TMatrixType2 &rEigenValuesMatrix, const double Tolerance=1.0e-18, const SizeType MaxIterations=20) | Kratos::MathUtils< TDataType > | inlinestatic |
GeneralizedDet(const TMatrixType &rA) | Kratos::MathUtils< TDataType > | inlinestatic |
GeneralizedInvertMatrix(const TMatrix1 &rInputMatrix, TMatrix2 &rInvertedMatrix, double &rInputMatrixDet, const double Tolerance=ZeroTolerance) | Kratos::MathUtils< TDataType > | inlinestatic |
GetZeroTolerance() | Kratos::MathUtils< TDataType > | inlinestatic |
Heron(double a, double b, double c) | Kratos::MathUtils< TDataType > | inlinestatic |
IndexType typedef | Kratos::MathUtils< TDataType > | |
IndirectArrayType typedef | Kratos::MathUtils< TDataType > | |
InvertMatrix(const BoundedMatrix< double, TDim, TDim > &rInputMatrix, double &rInputMatrixDet, const double Tolerance=ZeroTolerance) | Kratos::MathUtils< TDataType > | inlinestatic |
InvertMatrix(const TMatrix1 &rInputMatrix, TMatrix2 &rInvertedMatrix, double &rInputMatrixDet, const double Tolerance=ZeroTolerance) | Kratos::MathUtils< TDataType > | inlinestatic |
InvertMatrix2(const TMatrix1 &rInputMatrix, TMatrix2 &rInvertedMatrix, double &rInputMatrixDet) | Kratos::MathUtils< TDataType > | inlinestatic |
InvertMatrix3(const TMatrix1 &rInputMatrix, TMatrix2 &rInvertedMatrix, double &rInputMatrixDet) | Kratos::MathUtils< TDataType > | inlinestatic |
InvertMatrix4(const TMatrix1 &rInputMatrix, TMatrix2 &rInvertedMatrix, double &rInputMatrixDet) | Kratos::MathUtils< TDataType > | inlinestatic |
KRATOS_DEPRECATED_MESSAGE("Please use GaussSeidelEigenSystem() instead. Note the resulting EigenVectors matrix is transposed respect GaussSeidelEigenSystem()") static inline bool EigenSystem(const BoundedMatrix< double | Kratos::MathUtils< TDataType > | |
MatrixSquareRoot(const TMatrixType1 &rA, TMatrixType2 &rMatrixSquareRoot, const double Tolerance=1.0e-18, const SizeType MaxIterations=20) | Kratos::MathUtils< TDataType > | inline |
MatrixType typedef | Kratos::MathUtils< TDataType > | |
MaxIterations | Kratos::MathUtils< TDataType > | |
Norm(const Vector &a) | Kratos::MathUtils< TDataType > | inlinestatic |
Norm3(const TVectorType &a) | Kratos::MathUtils< TDataType > | inlinestatic |
OrthonormalBasis(const T1 &c, T2 &a, T3 &b, const IndexType Type=0) | Kratos::MathUtils< TDataType > | inlinestatic |
OrthonormalBasisFrisvad(const T1 &c, T2 &a, T3 &b) | Kratos::MathUtils< TDataType > | inlinestatic |
OrthonormalBasisHughesMoeller(const T1 &c, T2 &a, T3 &b) | Kratos::MathUtils< TDataType > | inlinestatic |
OrthonormalBasisNaive(const T1 &c, T2 &a, T3 &b) | Kratos::MathUtils< TDataType > | inlinestatic |
rA | Kratos::MathUtils< TDataType > | |
rEigenValuesMatrix | Kratos::MathUtils< TDataType > | |
rEigenVectorsMatrix | Kratos::MathUtils< TDataType > | |
Sign(const double &ThisDataType) | Kratos::MathUtils< TDataType > | inlinestatic |
SizeType typedef | Kratos::MathUtils< TDataType > | |
Solve(MatrixType A, VectorType &rX, const VectorType &rB) | Kratos::MathUtils< TDataType > | static |
StableNorm(const Vector &a) | Kratos::MathUtils< TDataType > | inlinestatic |
StrainTensorToVector(const TMatrixType &rStrainTensor, SizeType rSize=0) | Kratos::MathUtils< TDataType > | inlinestatic |
StrainVectorToTensor(const TVector &rStrainVector) | Kratos::MathUtils< TDataType > | inlinestatic |
StressTensorToVector(const TMatrixType &rStressTensor, SizeType rSize=0) | Kratos::MathUtils< TDataType > | inlinestatic |
StressVectorToTensor(const TVector &rStressVector) | Kratos::MathUtils< TDataType > | inlinestatic |
SubtractMatrix(MatrixType &rDestination, const MatrixType &rInputMatrix, const IndexType InitialRow, const IndexType InitialCol) | Kratos::MathUtils< TDataType > | inlinestatic |
SymmetricTensorToVector(const TMatrixType &rTensor, SizeType rSize=0) | Kratos::MathUtils< TDataType > | inlinestatic |
TDim | Kratos::MathUtils< TDataType > | |
TensorProduct3(const Vector &a, const Vector &b) | Kratos::MathUtils< TDataType > | inlinestatic |
Tolerance | Kratos::MathUtils< TDataType > | |
UnitCrossProduct(T1 &c, const T2 &a, const T3 &b) | Kratos::MathUtils< TDataType > | inlinestatic |
VecAdd(Vector &rX, const double coeff, Vector &rY) | Kratos::MathUtils< TDataType > | inlinestatic |
VectorsAngle(const T1 &rV1, const T2 &rV2) | Kratos::MathUtils< TDataType > | inlinestatic |
VectorToSymmetricTensor(const TVector &rVector) | Kratos::MathUtils< TDataType > | inlinestatic |
VectorType typedef | Kratos::MathUtils< TDataType > | |
WriteMatrix(MatrixType &rDestination, const MatrixType &rInputMatrix, const IndexType InitialRow, const IndexType InitialCol) | Kratos::MathUtils< TDataType > | inlinestatic |
ZeroTolerance | Kratos::MathUtils< TDataType > | static |