51 template <SizeType TVoigtSize = 6>
122 double J3, lode_angle;
126 const double checker = std::abs(lode_angle * 180.0 /
Globals::Pi);
129 if (checker < 29.0) {
130 c2 = 2.0 * (std::cos(lode_angle) + std::sin(lode_angle) * std::tan(3.0 * lode_angle));
131 c3 = std::sqrt(3.0) * std::sin(lode_angle) / (
J2 * std::cos(3.0 * lode_angle));
137 noalias(rGFlux) = c2 * second_vector + c3 * third_vector;
static void CalculateSecondVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rSecondVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:100
static void CalculateThirdVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rThirdVector)
This method computes the third vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:131
static void CalculateLodeAngle(const double J2, const double J3, double &rLodeAngle)
This method computes the lode angle.
Definition: advanced_constitutive_law_utilities.cpp:158
static void CalculateJ3Invariant(const BoundedVectorType &rDeviator, double &rJ3)
This method computes the third invariant of J.
Definition: advanced_constitutive_law_utilities.cpp:62
Properties encapsulates data shared by different Elements or Conditions. It can store any type of dat...
Definition: properties.h:69
This class defines a plastic potential following the theory of Tresca.
Definition: tresca_plastic_potential.h:53
KRATOS_CLASS_POINTER_DEFINITION(TrescaPlasticPotential)
Counted pointer of TrescaPlasticPotential.
virtual ~TrescaPlasticPotential()
Destructor.
Definition: tresca_plastic_potential.h:88
TrescaPlasticPotential()
Initialization constructor.
Definition: tresca_plastic_potential.h:72
static int Check(const Properties &rMaterialProperties)
This method defines the check to be performed in the plastic potential.
Definition: tresca_plastic_potential.h:144
static void CalculatePlasticPotentialDerivative(const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rGFlux, ConstitutiveLaw::Parameters &rValues)
This script calculates the derivatives of the plastic potential according to NAYAK-ZIENKIEWICZ paper ...
Definition: tresca_plastic_potential.h:109
TrescaPlasticPotential(TrescaPlasticPotential const &rOther)
Copy constructor.
Definition: tresca_plastic_potential.h:77
static constexpr SizeType Dimension
We define the dimension.
Definition: tresca_plastic_potential.h:59
static constexpr SizeType VoigtSize
The define the Voigt size.
Definition: tresca_plastic_potential.h:62
TrescaPlasticPotential & operator=(TrescaPlasticPotential const &rOther)
Assignment operator.
Definition: tresca_plastic_potential.h:82
constexpr double Pi
Definition: global_variables.h:25
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
std::size_t SizeType
The definition of the size type.
Definition: mortar_classes.h:43
T & noalias(T &TheMatrix)
Definition: amatrix_interface.h:484
float J2
Definition: isotropic_damage_automatic_differentiation.py:133
def J3
Definition: isotropic_damage_automatic_differentiation.py:176
Definition: constitutive_law.h:189