KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
Variables
sp_statistics_2 Namespace Reference

Variables

string file_name = 'sp_data.hdf5'
 
 f = h5py.File(file_name, 'r')
 
 test_id = f.attrs['test_id']
 
 internal_radius = f.attrs['internal_radius']
 
 external_radius = f.attrs['external_radius']
 
 interface_radius = f.attrs['interface_radius']
 
 thickness = f.attrs['thickness']
 
 volume = f.attrs['volume']
 
 real_probe_height = f.attrs['real_probe_height']
 
 target_porosity = f.attrs['target_porosity']
 
 porosity = f.attrs['porosity']
 
 density = f.attrs['density']
 
int failure_step = 300
 
int max_step = failure_step
 
 times = np.zeros(max_step)
 
tuple delta_probe_radius = (interface_radius-internal_radius)/5.0
 
tuple probe_radius_1 = (internal_radius+delta_probe_radius*1)**2
 
tuple probe_radius_2 = (internal_radius+delta_probe_radius*2)**2
 
tuple probe_radius_3 = (internal_radius+delta_probe_radius*3)**2
 
tuple probe_radius_4 = (internal_radius+delta_probe_radius*4)**2
 
int interface_radius_2 = interface_radius**2
 
 avg_num_intact_bonds_0 = np.zeros(max_step)
 
 avg_num_intact_bonds_1 = np.zeros(max_step)
 
 avg_num_intact_bonds_2 = np.zeros(max_step)
 
 avg_num_intact_bonds_3 = np.zeros(max_step)
 
 avg_num_intact_bonds_4 = np.zeros(max_step)
 
 avg_num_broken_bonds_0 = np.zeros(max_step)
 
 avg_num_broken_bonds_1 = np.zeros(max_step)
 
 avg_num_broken_bonds_2 = np.zeros(max_step)
 
 avg_num_broken_bonds_3 = np.zeros(max_step)
 
 avg_num_broken_bonds_4 = np.zeros(max_step)
 
 continuum_bonds = np.array(f[str(i)].get('current_continuum_bonds'))
 
 initial_continuum_bonds = np.array(f[str(i)].get('initial_continuum_bonds'))
 
 xs = np.array(f[str(i)].get('x'))
 
 ys = np.array(f[str(i)].get('y'))
 
 xs_2 = np.power(xs,2)
 
 ys_2 = np.power(ys,2)
 
 distance_2 = xs_2 + ys_2
 
 num_intact_bonds_0 = np.where(distance_2<probe_radius_1,continuum_bonds,-100.0)
 
 index_to_delete = np.where(num_intact_bonds_0<0.0)[0]
 
 num_init_bonds_0 = np.where(distance_2<probe_radius_1,initial_continuum_bonds,-100.0)
 
 num_broken_bonds_0 = num_init_bonds_0 - num_intact_bonds_0
 
 num_intact_bonds_1 = np.where(distance_2>=probe_radius_1,continuum_bonds,-100)
 
 num_init_bonds_1 = np.where(distance_2>=probe_radius_1,initial_continuum_bonds,-100)
 
 num_broken_bonds_1 = num_init_bonds_1 - num_intact_bonds_1
 
 num_intact_bonds_2 = np.where(distance_2>=probe_radius_2,continuum_bonds,-100)
 
 num_init_bonds_2 = np.where(distance_2>=probe_radius_2,initial_continuum_bonds,-100)
 
 num_broken_bonds_2 = num_init_bonds_2 - num_intact_bonds_2
 
 num_intact_bonds_3 = np.where(distance_2>=probe_radius_3,continuum_bonds,-100)
 
 num_init_bonds_3 = np.where(distance_2>=probe_radius_3,initial_continuum_bonds,-100)
 
 num_broken_bonds_3 = num_init_bonds_3 - num_intact_bonds_3
 
 num_intact_bonds_4 = np.where(distance_2>probe_radius_4,continuum_bonds,-100.0)
 
 num_init_bonds_4 = np.where(distance_2>probe_radius_4,initial_continuum_bonds,-100.0)
 
 num_broken_bonds_4 = num_init_bonds_4 - num_intact_bonds_4
 
 fig1
 
 axs1
 
 figsize
 
string graph_name = 'average_number_intact_bonds_probe_radius.pdf'
 
 fig2
 
 axs2
 

Variable Documentation

◆ avg_num_broken_bonds_0

sp_statistics_2.avg_num_broken_bonds_0 = np.zeros(max_step)

◆ avg_num_broken_bonds_1

sp_statistics_2.avg_num_broken_bonds_1 = np.zeros(max_step)

◆ avg_num_broken_bonds_2

sp_statistics_2.avg_num_broken_bonds_2 = np.zeros(max_step)

◆ avg_num_broken_bonds_3

sp_statistics_2.avg_num_broken_bonds_3 = np.zeros(max_step)

◆ avg_num_broken_bonds_4

sp_statistics_2.avg_num_broken_bonds_4 = np.zeros(max_step)

◆ avg_num_intact_bonds_0

sp_statistics_2.avg_num_intact_bonds_0 = np.zeros(max_step)

◆ avg_num_intact_bonds_1

sp_statistics_2.avg_num_intact_bonds_1 = np.zeros(max_step)

◆ avg_num_intact_bonds_2

sp_statistics_2.avg_num_intact_bonds_2 = np.zeros(max_step)

◆ avg_num_intact_bonds_3

sp_statistics_2.avg_num_intact_bonds_3 = np.zeros(max_step)

◆ avg_num_intact_bonds_4

sp_statistics_2.avg_num_intact_bonds_4 = np.zeros(max_step)

◆ axs1

sp_statistics_2.axs1

◆ axs2

sp_statistics_2.axs2

◆ continuum_bonds

sp_statistics_2.continuum_bonds = np.array(f[str(i)].get('current_continuum_bonds'))

◆ delta_probe_radius

tuple sp_statistics_2.delta_probe_radius = (interface_radius-internal_radius)/5.0

◆ density

sp_statistics_2.density = f.attrs['density']

◆ distance_2

sp_statistics_2.distance_2 = xs_2 + ys_2

◆ external_radius

sp_statistics_2.external_radius = f.attrs['external_radius']

◆ f

sp_statistics_2.f = h5py.File(file_name, 'r')

◆ failure_step

int sp_statistics_2.failure_step = 300

◆ fig1

sp_statistics_2.fig1

◆ fig2

sp_statistics_2.fig2

◆ figsize

sp_statistics_2.figsize

◆ file_name

string sp_statistics_2.file_name = 'sp_data.hdf5'

◆ graph_name

string sp_statistics_2.graph_name = 'average_number_intact_bonds_probe_radius.pdf'

◆ index_to_delete

sp_statistics_2.index_to_delete = np.where(num_intact_bonds_0<0.0)[0]

◆ initial_continuum_bonds

sp_statistics_2.initial_continuum_bonds = np.array(f[str(i)].get('initial_continuum_bonds'))

◆ interface_radius

sp_statistics_2.interface_radius = f.attrs['interface_radius']

◆ interface_radius_2

int sp_statistics_2.interface_radius_2 = interface_radius**2

◆ internal_radius

sp_statistics_2.internal_radius = f.attrs['internal_radius']

◆ max_step

int sp_statistics_2.max_step = failure_step

◆ num_broken_bonds_0

sp_statistics_2.num_broken_bonds_0 = num_init_bonds_0 - num_intact_bonds_0

◆ num_broken_bonds_1

sp_statistics_2.num_broken_bonds_1 = num_init_bonds_1 - num_intact_bonds_1

◆ num_broken_bonds_2

sp_statistics_2.num_broken_bonds_2 = num_init_bonds_2 - num_intact_bonds_2

◆ num_broken_bonds_3

sp_statistics_2.num_broken_bonds_3 = num_init_bonds_3 - num_intact_bonds_3

◆ num_broken_bonds_4

sp_statistics_2.num_broken_bonds_4 = num_init_bonds_4 - num_intact_bonds_4

◆ num_init_bonds_0

sp_statistics_2.num_init_bonds_0 = np.where(distance_2<probe_radius_1,initial_continuum_bonds,-100.0)

◆ num_init_bonds_1

sp_statistics_2.num_init_bonds_1 = np.where(distance_2>=probe_radius_1,initial_continuum_bonds,-100)

◆ num_init_bonds_2

sp_statistics_2.num_init_bonds_2 = np.where(distance_2>=probe_radius_2,initial_continuum_bonds,-100)

◆ num_init_bonds_3

sp_statistics_2.num_init_bonds_3 = np.where(distance_2>=probe_radius_3,initial_continuum_bonds,-100)

◆ num_init_bonds_4

sp_statistics_2.num_init_bonds_4 = np.where(distance_2>probe_radius_4,initial_continuum_bonds,-100.0)

◆ num_intact_bonds_0

sp_statistics_2.num_intact_bonds_0 = np.where(distance_2<probe_radius_1,continuum_bonds,-100.0)

◆ num_intact_bonds_1

sp_statistics_2.num_intact_bonds_1 = np.where(distance_2>=probe_radius_1,continuum_bonds,-100)

◆ num_intact_bonds_2

sp_statistics_2.num_intact_bonds_2 = np.where(distance_2>=probe_radius_2,continuum_bonds,-100)

◆ num_intact_bonds_3

sp_statistics_2.num_intact_bonds_3 = np.where(distance_2>=probe_radius_3,continuum_bonds,-100)

◆ num_intact_bonds_4

sp_statistics_2.num_intact_bonds_4 = np.where(distance_2>probe_radius_4,continuum_bonds,-100.0)

◆ porosity

sp_statistics_2.porosity = f.attrs['porosity']

◆ probe_radius_1

tuple sp_statistics_2.probe_radius_1 = (internal_radius+delta_probe_radius*1)**2

◆ probe_radius_2

tuple sp_statistics_2.probe_radius_2 = (internal_radius+delta_probe_radius*2)**2

◆ probe_radius_3

tuple sp_statistics_2.probe_radius_3 = (internal_radius+delta_probe_radius*3)**2

◆ probe_radius_4

tuple sp_statistics_2.probe_radius_4 = (internal_radius+delta_probe_radius*4)**2

◆ real_probe_height

sp_statistics_2.real_probe_height = f.attrs['real_probe_height']

◆ target_porosity

sp_statistics_2.target_porosity = f.attrs['target_porosity']

◆ test_id

sp_statistics_2.test_id = f.attrs['test_id']

◆ thickness

sp_statistics_2.thickness = f.attrs['thickness']

◆ times

sp_statistics_2.times = np.zeros(max_step)

◆ volume

sp_statistics_2.volume = f.attrs['volume']

◆ xs

sp_statistics_2.xs = np.array(f[str(i)].get('x'))

◆ xs_2

sp_statistics_2.xs_2 = np.power(xs,2)

◆ ys

sp_statistics_2.ys = np.array(f[str(i)].get('y'))

◆ ys_2

sp_statistics_2.ys_2 = np.power(ys,2)