|
string | generate_hyper_elastic_simo_taylor_neo_hookean.mode = "c" |
|
list | generate_hyper_elastic_simo_taylor_neo_hookean.dim_vect = [2, 3] |
|
string | generate_hyper_elastic_simo_taylor_neo_hookean.aux_filename = "hyper_elastic_simo_taylor_neo_hookean_" |
|
| generate_hyper_elastic_simo_taylor_neo_hookean.Kappa = sympy.Symbol("Kappa") |
|
| generate_hyper_elastic_simo_taylor_neo_hookean.Mu = sympy.Symbol("Mu") |
|
int | generate_hyper_elastic_simo_taylor_neo_hookean.strain_size = 3 |
|
| generate_hyper_elastic_simo_taylor_neo_hookean.E_voigt = KratosSympy.DefineVector("rStrain", strain_size) |
|
| generate_hyper_elastic_simo_taylor_neo_hookean.E = KratosSympy.ConvertVoigtStrainToMatrix(E_voigt) |
|
int | generate_hyper_elastic_simo_taylor_neo_hookean.C = 2*E + sympy.eye(dim, dim) |
|
| generate_hyper_elastic_simo_taylor_neo_hookean.J = sympy.sqrt(sympy.det(C).doit()) |
|
tuple | generate_hyper_elastic_simo_taylor_neo_hookean.devC = (J**(-sympy.Rational(2,dim)))*C |
|
tuple | generate_hyper_elastic_simo_taylor_neo_hookean.psi = (Kappa/4)*(J**2-1.0) - (Kappa/2)*sympy.ln(J) |
|
| generate_hyper_elastic_simo_taylor_neo_hookean.S_voigt = sympy.Matrix(sympy.zeros(strain_size, 1)) |
|
| generate_hyper_elastic_simo_taylor_neo_hookean.D_voigt = sympy.Matrix(sympy.zeros(strain_size,strain_size)) |
|
| generate_hyper_elastic_simo_taylor_neo_hookean.S_out = KratosSympy.OutputVector_CollectingFactors(S_voigt, "rStressVector", mode) |
|
| generate_hyper_elastic_simo_taylor_neo_hookean.D_out = KratosSympy.OutputMatrix_CollectingFactors(D_voigt, "rConstitutiveMatrix", mode) |
|
string | generate_hyper_elastic_simo_taylor_neo_hookean.output_filename = aux_filename + ("3d.cpp" if dim == 3 else "plane_strain_2d.cpp") |
|
string | generate_hyper_elastic_simo_taylor_neo_hookean.template_filename = aux_filename + ("3d_template.cpp" if dim == 3 else "plane_strain_2d_template.cpp") |
|
| generate_hyper_elastic_simo_taylor_neo_hookean.outstring = open(template_filename).read() |
|