KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize > Member List

This is the complete list of members for Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >, including all inherited members.

BoundedMatrixType typedefKratos::AdvancedConstitutiveLawUtilities< TVoigtSize >
BoundedMatrixVoigtType typedefKratos::AdvancedConstitutiveLawUtilities< TVoigtSize >
BoundedVectorType typedefKratos::AdvancedConstitutiveLawUtilities< TVoigtSize >
CalculateAlmansiStrain(const MatrixType &rLeftCauchyTensor, VectorType &rStrainVector)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateBiotStrain(const MatrixType &rCauchyTensor, VectorType &rStrainVector)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateCharacteristicLength(const GeometryType &rGeometry)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateCharacteristicLengthOnReferenceConfiguration(const GeometryType &rGeometry)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateDirectElasticDeformationGradient(const MatrixType &rElasticTrial, const BoundedVectorType &rPlasticPotentialDerivative, const double PlasticConsistencyFactorIncrement, const MatrixType &rRe)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateDirectPlasticDeformationGradientIncrement(const BoundedVectorType &rPlasticPotentialDerivative, const double PlasticConsistencyFactorIncrement, const MatrixType &rRe)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateElasticDeformationGradient(const MatrixType &rF, const MatrixType &rFp)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateExponentialElasticDeformationGradient(const MatrixType &rTrialFe, const BoundedVectorType &rPlasticPotentialDerivative, const double PlasticConsistencyFactorIncrement, const MatrixType &rRe)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateExponentialPlasticDeformationGradientIncrement(const BoundedVectorType &rPlasticPotentialDerivative, const double PlasticConsistencyFactorIncrement, const MatrixType &rRe)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateFirstVector(BoundedVectorType &rFirstVector)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateHenckyStrain(const MatrixType &rCauchyTensor, VectorType &rStrainVector)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateI1Invariant(const TVector &rStressVector, double &rI1)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >inlinestatic
CalculateI2Invariant(const BoundedVectorType &rStressVector, double &rI2)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateI3Invariant(const BoundedVectorType &rStressVector, double &rI3)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateInGaussPoint(const Variable< double > &rVariableInput, ConstitutiveLaw::Parameters &rParameters, unsigned int step=0)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateJ2Invariant(const TVector &rStressVector, const double I1, BoundedVectorType &rDeviator, double &rJ2)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >inlinestatic
CalculateJ3Invariant(const BoundedVectorType &rDeviator, double &rJ3)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateLinearPlasticDeformationGradientIncrement(const BoundedVectorType &rPlasticPotentialDerivative, const double PlasticConsistencyFactorIncrement)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateLodeAngle(const double J2, const double J3, double &rLodeAngle)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculatePlasticDeformationGradientFromElastic(const MatrixType &rF, const MatrixType &rFp)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculatePlasticStrainFromFp(const MatrixType &rFp, Vector &rPlasticStrainVector)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculatePrincipalStresses(array_1d< double, Dimension > &rPrincipalStressVector, const BoundedVectorType &rStressVector)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculatePrincipalStresses(array_1d< double, Dimension > &rPrincipalStressVector, const BoundedVectorType &rStressVector)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >
CalculatePrincipalStresses(array_1d< double, Dimension > &rPrincipalStressVector, const BoundedVectorType &rStressVector)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >
CalculatePrincipalStressesWithCardano(array_1d< double, Dimension > &rPrincipalStressVector, const BoundedVectorType &rStressVector)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateRotationOperator(const double EulerAngle1, const double EulerAngle2, const double EulerAngle3, BoundedMatrix< double, 3, 3 > &rRotationOperator)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateRotationOperatorEuler1(const double EulerAngle1, BoundedMatrix< double, 3, 3 > &rRotationOperator)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateRotationOperatorEuler2(const double EulerAngle2, BoundedMatrix< double, 3, 3 > &rRotationOperator)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateRotationOperatorEuler3(const double EulerAngle3, BoundedMatrix< double, 3, 3 > &rRotationOperator)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateSecondVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rSecondVector)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
CalculateThirdVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rThirdVector)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
ComputeEquivalentSmallDeformationDeformationGradient(const Vector &rStrainVector)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
DimensionKratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
GeometryType typedefKratos::AdvancedConstitutiveLawUtilities< TVoigtSize >
GetMaterialPropertyThroughAccessor(const Variable< double > &rVariable, ConstitutiveLaw::Parameters &rValues)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
GetPropertyFromTemperatureTable(const Variable< double > &rVariable, ConstitutiveLaw::Parameters &rValues, const double Temperature)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
IndexType typedefKratos::AdvancedConstitutiveLawUtilities< TVoigtSize >
MacaullyBrackets(const double Number)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
MatrixType typedefKratos::AdvancedConstitutiveLawUtilities< TVoigtSize >
NodeType typedefKratos::AdvancedConstitutiveLawUtilities< TVoigtSize >
SpectralDecomposition(const BoundedVectorType &rStressVector, BoundedVectorType &rStressVectorTension, BoundedVectorType &rStressVectorCompression)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
SubstractThermalStrain(ConstitutiveLaw::StrainVectorType &rStrainVector, const double ReferenceTemperature, ConstitutiveLaw::Parameters &rParameters, const bool IsPlaneStrain=false)Kratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
toleranceKratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static
VectorType typedefKratos::AdvancedConstitutiveLawUtilities< TVoigtSize >
VoigtSizeKratos::AdvancedConstitutiveLawUtilities< TVoigtSize >static