50 template <SizeType TVoigtSize = 6>
121 double J3, lode_angle;
126 double checker = std::abs(lode_angle * 180.0 /
Globals::Pi);
127 const double sqrt_3 = std::sqrt(3.0);
129 if (std::abs(checker) < 29.0) {
130 const double sqrt_J2 = std::sqrt(
J2);
131 const double square_sin_3_lode = std::pow(std::sin(3.0 * lode_angle), 2);
132 const double angle = lode_angle +
Globals::Pi / 6.0;
133 const double dLode_dJ2 = (3.0 * sqrt_3 *
J3) / (4.0 *
J2 *
J2 * sqrt_J2 * std::sqrt(1.0 - square_sin_3_lode));
134 const double dLode_dJ3 = -sqrt_3 / (2.0 *
J2 * sqrt_J2 * std::sqrt(1.0 - square_sin_3_lode));
136 c2 = 2.0 * sqrt_3 / 3.0 * (std::cos(angle) / (2.0 * sqrt_J2) - 2.0 * sqrt_3 * sqrt_J2 / 3.0 * std::sin(angle) * dLode_dJ2) * 2.0 * sqrt_J2;
137 c3 = -2.0 * std::sqrt(3.0 *
J2) / 3.0 * std::sin(angle) * dLode_dJ3;
140 const double sin_phi = std::sin(friction_angle);
146 noalias(rGFlux) = c1 * first_vector + c2 * second_vector + c3 * third_vector;
static void CalculateSecondVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rSecondVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:100
static void CalculateFirstVector(BoundedVectorType &rFirstVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:80
static void CalculateThirdVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rThirdVector)
This method computes the third vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:131
static void CalculateLodeAngle(const double J2, const double J3, double &rLodeAngle)
This method computes the lode angle.
Definition: advanced_constitutive_law_utilities.cpp:158
static void CalculateJ3Invariant(const BoundedVectorType &rDeviator, double &rJ3)
This method computes the third invariant of J.
Definition: advanced_constitutive_law_utilities.cpp:62
Properties encapsulates data shared by different Elements or Conditions. It can store any type of dat...
Definition: properties.h:69
This class defines a plastic potential following the theory of Rankine.
Definition: rankine_plastic_potential.h:52
static void CalculatePlasticPotentialDerivative(const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rGFlux, ConstitutiveLaw::Parameters &rValues)
This script calculates the derivatives of the plastic potential according to NAYAK-ZIENKIEWICZ paper ...
Definition: rankine_plastic_potential.h:108
static int Check(const Properties &rMaterialProperties)
This method defines the check to be performed in the plastic potential.
Definition: rankine_plastic_potential.h:153
RankinePlasticPotential()
Initialization constructor.
Definition: rankine_plastic_potential.h:71
static constexpr SizeType VoigtSize
The define the Voigt size.
Definition: rankine_plastic_potential.h:61
static constexpr SizeType Dimension
We define the dimension.
Definition: rankine_plastic_potential.h:58
virtual ~RankinePlasticPotential()
Destructor.
Definition: rankine_plastic_potential.h:87
KRATOS_CLASS_POINTER_DEFINITION(RankinePlasticPotential)
Counted pointer of RankinePlasticPotential.
RankinePlasticPotential & operator=(RankinePlasticPotential const &rOther)
Assignment operator.
Definition: rankine_plastic_potential.h:81
RankinePlasticPotential(RankinePlasticPotential const &rOther)
Copy constructor.
Definition: rankine_plastic_potential.h:76
constexpr double Pi
Definition: global_variables.h:25
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
std::size_t SizeType
The definition of the size type.
Definition: mortar_classes.h:43
T & noalias(T &TheMatrix)
Definition: amatrix_interface.h:484
float J2
Definition: isotropic_damage_automatic_differentiation.py:133
CFL
Definition: isotropic_damage_automatic_differentiation.py:156
def J3
Definition: isotropic_damage_automatic_differentiation.py:176
sin_phi
Definition: isotropic_damage_automatic_differentiation.py:153
Definition: constitutive_law.h:189
const Properties & GetMaterialProperties()
Definition: constitutive_law.h:457