KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
Namespaces | Variables
generate_two_fluid_navier_stokes.py File Reference

Namespaces

 generate_two_fluid_navier_stokes
 

Variables

bool generate_two_fluid_navier_stokes.do_simplifications = False
 Settings explanation DIMENSION TO COMPUTE: This symbolic generator is valid for both 2D and 3D cases. More...
 
string generate_two_fluid_navier_stokes.dim_to_compute = "Both"
 
string generate_two_fluid_navier_stokes.linearisation = "Picard"
 
bool generate_two_fluid_navier_stokes.divide_by_rho = True
 
bool generate_two_fluid_navier_stokes.ASGS_stabilization = True
 
string generate_two_fluid_navier_stokes.mode = "c"
 
string generate_two_fluid_navier_stokes.time_integration = "bdf2"
 
string generate_two_fluid_navier_stokes.output_filename = "two_fluid_navier_stokes.cpp"
 
string generate_two_fluid_navier_stokes.template_filename = "two_fluid_navier_stokes_template.cpp"
 
string generate_two_fluid_navier_stokes.err_msg = "Wrong time_integration. Given \'" + time_integration + "\'. Available options are \'bdf2\' , \'alpha_method\'and \'theta_scheme\'."
 
list generate_two_fluid_navier_stokes.dim_vector = [2]
 
 generate_two_fluid_navier_stokes.templatefile = open(template_filename)
 Read the template file. More...
 
 generate_two_fluid_navier_stokes.outstring = templatefile.read()
 
int generate_two_fluid_navier_stokes.nnodes = 3
 
int generate_two_fluid_navier_stokes.strain_size = 3
 
bool generate_two_fluid_navier_stokes.impose_partion_of_unity = False
 
 generate_two_fluid_navier_stokes.N
 
 generate_two_fluid_navier_stokes.DN
 
 generate_two_fluid_navier_stokes.DNenr = DefineMatrix('DNenr',nnodes,dim)
 
 generate_two_fluid_navier_stokes.Nenr = DefineVector('Nenr',nnodes)
 
 generate_two_fluid_navier_stokes.v = DefineMatrix('v',nnodes,dim)
 Unknown fields definition. More...
 
 generate_two_fluid_navier_stokes.vn = DefineMatrix('vn',nnodes,dim)
 
 generate_two_fluid_navier_stokes.vnn = DefineMatrix('vnn',nnodes,dim)
 
 generate_two_fluid_navier_stokes.p = DefineVector('p',nnodes)
 
 generate_two_fluid_navier_stokes.penr = DefineVector('penr',nnodes)
 
 generate_two_fluid_navier_stokes.w = DefineMatrix('w',nnodes,dim)
 Test functions definition. More...
 
 generate_two_fluid_navier_stokes.q = DefineVector('q',nnodes)
 
 generate_two_fluid_navier_stokes.qenr = DefineVector('qenr' ,nnodes)
 
 generate_two_fluid_navier_stokes.f = DefineMatrix('f',nnodes,dim)
 Other data definitions. More...
 
 generate_two_fluid_navier_stokes.fn = DefineMatrix('fn',nnodes,dim)
 
 generate_two_fluid_navier_stokes.vmeshn = DefineMatrix('vmeshn',nnodes,dim)
 
 generate_two_fluid_navier_stokes.C = DefineSymmetricMatrix('C',strain_size,strain_size)
 Constitutive matrix definition. More...
 
 generate_two_fluid_navier_stokes.stress = DefineVector('stress',strain_size)
 Stress vector definition. More...
 
 generate_two_fluid_navier_stokes.dt = sympy.Symbol('dt', positive = True)
 Other simbols definition. More...
 
 generate_two_fluid_navier_stokes.rho = sympy.Symbol('rho', positive = True)
 
 generate_two_fluid_navier_stokes.nu = sympy.Symbol('nu', positive = True)
 
 generate_two_fluid_navier_stokes.mu = sympy.Symbol('mu', positive = True)
 
 generate_two_fluid_navier_stokes.tau1 = sympy.Symbol('tau1', positive = True)
 
 generate_two_fluid_navier_stokes.tau2 = sympy.Symbol('tau2', positive = True)
 
 generate_two_fluid_navier_stokes.h = sympy.Symbol('h', positive = True)
 
 generate_two_fluid_navier_stokes.dyn_tau = sympy.Symbol('dyn_tau', positive = True)
 
 generate_two_fluid_navier_stokes.stab_c1 = sympy.Symbol('stab_c1', positive = True)
 
 generate_two_fluid_navier_stokes.stab_c2 = sympy.Symbol('stab_c2', positive = True)
 
 generate_two_fluid_navier_stokes.volume_error_ratio = sympy.Symbol('volume_error_ratio')
 
 generate_two_fluid_navier_stokes.art_dyn_visc_coeff = sympy.Symbol('art_dyn_visc_coeff')
 
 generate_two_fluid_navier_stokes.vconv = DefineMatrix('vconv',nnodes,dim)
 Convective velocity definition. More...
 
 generate_two_fluid_navier_stokes.vmesh = DefineMatrix('vmesh',nnodes,dim)
 
 generate_two_fluid_navier_stokes.vconv_gauss = vconv.transpose()*N
 
float generate_two_fluid_navier_stokes.vconv_gauss_norm = 0.0
 Compute the stabilization parameters. More...
 
 generate_two_fluid_navier_stokes.K_darcy = sympy.Symbol('K_darcy', positive = True)
 Data interpolation to the Gauss points. More...
 
 generate_two_fluid_navier_stokes.bdf0 = sympy.Symbol('bdf0')
 Backward differences coefficients. More...
 
 generate_two_fluid_navier_stokes.bdf1 = sympy.Symbol('bdf1')
 
 generate_two_fluid_navier_stokes.bdf2 = sympy.Symbol('bdf2')
 
tuple generate_two_fluid_navier_stokes.acceleration = (bdf0*v +bdf1*vn + bdf2*vnn)
 
 generate_two_fluid_navier_stokes.v_gauss = v.transpose()*N
 
 generate_two_fluid_navier_stokes.f_gauss = f.transpose()*N
 
 generate_two_fluid_navier_stokes.max_sprectral_radius = sympy.Symbol('max_spectral_radius', positive = True)
 
 generate_two_fluid_navier_stokes.acceleration_alpha_method = DefineMatrix('acceleration_alpha_method',nnodes,dim)
 
float generate_two_fluid_navier_stokes.alpha_m = 0.5*((3-max_sprectral_radius)/(1+max_sprectral_radius))
 
int generate_two_fluid_navier_stokes.alpha_f = 1/(1+max_sprectral_radius)
 
float generate_two_fluid_navier_stokes.gamma = 0.5+ alpha_m -alpha_f
 
int generate_two_fluid_navier_stokes.f_alpha = fn+alpha_f*(f-fn)
 alpha method affected variables More...
 
int generate_two_fluid_navier_stokes.v_alpha = vn+alpha_f*(v-vn)
 
tuple generate_two_fluid_navier_stokes.acceleration_n = (v-vn)/(gamma*dt)+acceleration_alpha_method*(gamma-1)/gamma
 
 generate_two_fluid_navier_stokes.p_gauss = p.transpose()*N
 Data interpolation to the Gauss points. More...
 
 generate_two_fluid_navier_stokes.penr_gauss = penr.transpose()*Nenr
 
 generate_two_fluid_navier_stokes.w_gauss = w.transpose()*N
 
 generate_two_fluid_navier_stokes.q_gauss = q.transpose()*N
 
 generate_two_fluid_navier_stokes.qenr_gauss = qenr.transpose()*Nenr
 
tuple generate_two_fluid_navier_stokes.accel_gauss = acceleration.transpose()*N
 
 generate_two_fluid_navier_stokes.grad_v = DN.transpose()*v
 Gradients computation. More...
 
 generate_two_fluid_navier_stokes.grad_w = DN.transpose()*w
 
 generate_two_fluid_navier_stokes.grad_q = DN.transpose()*q
 
 generate_two_fluid_navier_stokes.grad_qenr = DNenr.transpose()*qenr
 
 generate_two_fluid_navier_stokes.grad_p = DN.transpose()*p
 
 generate_two_fluid_navier_stokes.grad_penr = DNenr.transpose()*penr
 
 generate_two_fluid_navier_stokes.div_v = div(DN,v)
 
 generate_two_fluid_navier_stokes.div_v_stabilization = div(DN,v)
 
 generate_two_fluid_navier_stokes.div_w = div(DN,w)
 
 generate_two_fluid_navier_stokes.div_vconv = div(DN,vconv)
 
 generate_two_fluid_navier_stokes.grad_sym_v_voigt = grad_sym_voigtform(DN,v)
 
 generate_two_fluid_navier_stokes.grad_sym_w_voigt = grad_sym_voigtform(DN,w)
 
tuple generate_two_fluid_navier_stokes.convective_term = (vconv_gauss.transpose()*grad_v)
 
tuple generate_two_fluid_navier_stokes.rv_galerkin = rho*w_gauss.transpose()*f_gauss - rho*w_gauss.transpose()*accel_gauss - rho*w_gauss.transpose()*convective_term.transpose() - grad_sym_w_voigt.transpose()*stress + div_w*p_gauss
 Galerkin Functional. More...
 
tuple generate_two_fluid_navier_stokes.vel_residual = rho*f_gauss - rho*accel_gauss - rho*convective_term.transpose() - grad_p
 
 generate_two_fluid_navier_stokes.mas_residual = -div_v_stabilization[0,0]+volume_error_ratio
 
tuple generate_two_fluid_navier_stokes.vel_subscale = tau1*vel_residual
 
 generate_two_fluid_navier_stokes.mas_subscale = tau2*mas_residual
 
tuple generate_two_fluid_navier_stokes.rv_stab = grad_q.transpose()*vel_subscale
 
tuple generate_two_fluid_navier_stokes.rv = rv_galerkin + rv_stab
 Add the stabilization terms to the original residual terms. More...
 
 generate_two_fluid_navier_stokes.dofs = sympy.zeros(nnodes*(dim+1), 1)
 Define DOFs and test function vectors. More...
 
 generate_two_fluid_navier_stokes.testfunc = sympy.zeros(nnodes*(dim+1), 1)
 
 generate_two_fluid_navier_stokes.rhs = Compute_RHS(rv.copy(), testfunc, do_simplifications)
 Compute LHS and RHS For the RHS computation one wants the residual of the previous iteration (residual based formulation). More...
 
 generate_two_fluid_navier_stokes.rhs_out = OutputVector_CollectingFactors(rhs, "rhs", mode)
 
 generate_two_fluid_navier_stokes.lhs = Compute_LHS(rhs, testfunc, dofs, do_simplifications)
 
 generate_two_fluid_navier_stokes.lhs_out = OutputMatrix_CollectingFactors(lhs, "lhs", mode)
 
 generate_two_fluid_navier_stokes.vel_residual_enr = rho*f_gauss - rho*(accel_gauss + convective_term.transpose()) - grad_p - grad_penr
 K V x = b + rhs_eV H Kee penr = rhs_ee. More...
 
 generate_two_fluid_navier_stokes.vel_subscale_enr = vel_residual_enr * tau1
 
 generate_two_fluid_navier_stokes.rv_galerkin_enriched = div_w*penr_gauss
 
 generate_two_fluid_navier_stokes.rv_stab_enriched = grad_qenr.transpose()*vel_subscale_enr
 
 generate_two_fluid_navier_stokes.rv_enriched = rv_galerkin_enriched
 
 generate_two_fluid_navier_stokes.dofs_enr = sympy.zeros(nnodes,1)
 Add the stabilization terms to the original residual terms. More...
 
 generate_two_fluid_navier_stokes.testfunc_enr = sympy.zeros(nnodes,1)
 
 generate_two_fluid_navier_stokes.rhs_eV
 K V x = b + rhs_eV H Kee penr = rhs_ee. More...
 
 generate_two_fluid_navier_stokes.V
 
 generate_two_fluid_navier_stokes.rhs_ee
 
 generate_two_fluid_navier_stokes.H
 
 generate_two_fluid_navier_stokes.Kee
 
 generate_two_fluid_navier_stokes.V_out = OutputMatrix_CollectingFactors(V,"V",mode)
 
 generate_two_fluid_navier_stokes.H_out = OutputMatrix_CollectingFactors(H,"H",mode)
 
 generate_two_fluid_navier_stokes.Kee_out = OutputMatrix_CollectingFactors(Kee,"Kee",mode)
 
 generate_two_fluid_navier_stokes.rhs_ee_out = OutputVector_CollectingFactors(rhs_ee,"rhs_ee",mode)
 
tuple generate_two_fluid_navier_stokes.vel_residual_norm = vel_residual.norm()
 
 generate_two_fluid_navier_stokes.grad_v_norm = grad_v.norm()
 
float generate_two_fluid_navier_stokes.artificial_mu = 0.5*h*art_dyn_visc_coeff*(vel_residual_norm/grad_v_norm)
 
 generate_two_fluid_navier_stokes.grad_v_norm_out = OutputScalar(grad_v_norm, "grad_v_norm", mode)
 
 generate_two_fluid_navier_stokes.artificial_mu_out = OutputScalar(artificial_mu, "artificial_mu", mode)
 
 generate_two_fluid_navier_stokes.out = open(output_filename,'w')