KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
Functions | |
def | BenchmarkCheck (time, model_part) |
Variables | |
int | domain_size = 2 |
string | kratos_libs_path = '../../../../libs' |
string | kratos_applications_path = '../../../../applications/' |
string | kratos_benchmarking_path = '../../../../benchmarking' |
model_part = ModelPart("FluidPart") | |
thermal_settings = ConvectionDiffusionSettings() | |
string | input_file_name = "square" |
gid_mode = GiDPostMode.GiD_PostBinary | |
multifile = MultiFileFlag.MultipleFiles | |
deformed_mesh_flag = WriteDeformedMeshFlag.WriteUndeformed | |
write_conditions = WriteConditionsFlag.WriteElementsOnly | |
gid_io = GidIO(input_file_name, gid_mode, multifile, deformed_mesh_flag, write_conditions) | |
model_part_io_fluid = ModelPartIO(input_file_name) | |
float | mesh_name = 0.0 |
vel = Vector(3); | |
float | xc = 1.00 / 6.00 |
float | yc = 1.00 / 6.00 |
float | sigma = 0.2 |
tuple | X1 = (node.X - xc) / sigma |
tuple | X2 = (node.Y - yc) / sigma |
float | temp = 0.25 * (1.00 + math.cos(math.pi * X1)) * (1.00+math.cos(math.pi*X2)) |
int | output_step = 20 |
float | delta_t = 2.00 * math.pi / 200.0; |
int | out = 0 |
int | time_old_print = 0 |
float | time = 0.0 |
float | max_time = 7.0 |
int | step = 0 |
int | convection_order = 2 |
pConvPrecond = DiagonalPreconditioner() | |
convection_linear_solver = BICGSTABSolver(1e-9, 5000, pConvPrecond) | |
convection_solver = pure_convection_solver.PureConvectionSolver(model_part, domain_size, thermal_settings) | |
neighbour_finder = FindNodalNeighboursProcess(model_part); | |
scalar_var_convected | |
float | time_to_print = time - time_old_print |
def rotatingcone_PureConvectionBenchmarking.BenchmarkCheck | ( | time, | |
model_part | |||
) |
rotatingcone_PureConvectionBenchmarking.convection_linear_solver = BICGSTABSolver(1e-9, 5000, pConvPrecond) |
int rotatingcone_PureConvectionBenchmarking.convection_order = 2 |
rotatingcone_PureConvectionBenchmarking.convection_solver = pure_convection_solver.PureConvectionSolver(model_part, domain_size, thermal_settings) |
rotatingcone_PureConvectionBenchmarking.deformed_mesh_flag = WriteDeformedMeshFlag.WriteUndeformed |
float rotatingcone_PureConvectionBenchmarking.delta_t = 2.00 * math.pi / 200.0; |
int rotatingcone_PureConvectionBenchmarking.domain_size = 2 |
rotatingcone_PureConvectionBenchmarking.gid_io = GidIO(input_file_name, gid_mode, multifile, deformed_mesh_flag, write_conditions) |
rotatingcone_PureConvectionBenchmarking.gid_mode = GiDPostMode.GiD_PostBinary |
string rotatingcone_PureConvectionBenchmarking.input_file_name = "square" |
string rotatingcone_PureConvectionBenchmarking.kratos_applications_path = '../../../../applications/' |
string rotatingcone_PureConvectionBenchmarking.kratos_benchmarking_path = '../../../../benchmarking' |
string rotatingcone_PureConvectionBenchmarking.kratos_libs_path = '../../../../libs' |
float rotatingcone_PureConvectionBenchmarking.max_time = 7.0 |
float rotatingcone_PureConvectionBenchmarking.mesh_name = 0.0 |
rotatingcone_PureConvectionBenchmarking.model_part = ModelPart("FluidPart") |
rotatingcone_PureConvectionBenchmarking.model_part_io_fluid = ModelPartIO(input_file_name) |
rotatingcone_PureConvectionBenchmarking.multifile = MultiFileFlag.MultipleFiles |
rotatingcone_PureConvectionBenchmarking.neighbour_finder = FindNodalNeighboursProcess(model_part); |
int rotatingcone_PureConvectionBenchmarking.out = 0 |
int rotatingcone_PureConvectionBenchmarking.output_step = 20 |
rotatingcone_PureConvectionBenchmarking.pConvPrecond = DiagonalPreconditioner() |
rotatingcone_PureConvectionBenchmarking.scalar_var_convected |
float rotatingcone_PureConvectionBenchmarking.sigma = 0.2 |
int rotatingcone_PureConvectionBenchmarking.step = 0 |
float rotatingcone_PureConvectionBenchmarking.temp = 0.25 * (1.00 + math.cos(math.pi * X1)) * (1.00+math.cos(math.pi*X2)) |
rotatingcone_PureConvectionBenchmarking.thermal_settings = ConvectionDiffusionSettings() |
int rotatingcone_PureConvectionBenchmarking.time = 0.0 |
float rotatingcone_PureConvectionBenchmarking.time_old_print = 0 |
float rotatingcone_PureConvectionBenchmarking.time_to_print = time - time_old_print |
rotatingcone_PureConvectionBenchmarking.vel = Vector(3); |
rotatingcone_PureConvectionBenchmarking.write_conditions = WriteConditionsFlag.WriteElementsOnly |
float rotatingcone_PureConvectionBenchmarking.xc = 1.00 / 6.00 |
float rotatingcone_PureConvectionBenchmarking.yc = 1.00 / 6.00 |