57 template <
class TPlasticPotentialType>
77 static constexpr
double tolerance = std::numeric_limits<double>::epsilon();
118 const Vector& rStrainVector,
119 double& rEquivalentStress,
123 double I1,
J2,
J3, lode_angle;
132 const double friction_angle = r_material_properties[FRICTION_ANGLE] *
Globals::Pi / 180.0;
134 rEquivalentStress = (std::cos(lode_angle) - std::sin(lode_angle) * std::sin(friction_angle) / std::sqrt(3.0)) * std::sqrt(
J2) +
135 I1 * std::sin(friction_angle) / 3.0;
149 const double cohesion = r_material_properties[COHESION];
150 const double friction_angle = r_material_properties[FRICTION_ANGLE] *
Globals::Pi / 180.0;
152 rThreshold = cohesion * std::cos(friction_angle);
164 const double CharacteristicLength
168 const double fracture_energy = r_material_properties[FRACTURE_ENERGY];
169 const double young_modulus = r_material_properties[YOUNG_MODULUS];
170 double equivalent_yield;
173 rAParameter = 1.00 / (fracture_energy * young_modulus / (CharacteristicLength * std::pow(equivalent_yield, 2)) - 0.5);
174 KRATOS_ERROR_IF(rAParameter < 0.0) <<
"Fracture Energy is too low, increase FRACTURE_ENERGY..." << std::endl;
176 rAParameter = -std::pow(equivalent_yield, 2) / (2.0 * young_modulus * fracture_energy / CharacteristicLength);
196 TPlasticPotentialType::CalculatePlasticPotentialDerivative(rPredictiveStressVector, rDeviator,
J2, rDerivativePlasticPotential, rValues);
220 const double friction_angle = r_material_properties[FRICTION_ANGLE] *
Globals::Pi / 180.0;
226 double J3, lode_angle;
231 double checker = std::abs(lode_angle * 180.0 /
Globals::Pi);
233 if (std::abs(checker) < 29.0) {
234 c1 = std::sin(friction_angle) / 3.0;
235 c3 = (std::sqrt(3.0) * std::sin(lode_angle) + std::sin(friction_angle) * std::cos(lode_angle)) /
236 (2.0 *
J2 * std::cos(3.0 * lode_angle));
237 c2 = 0.5 * std::cos(lode_angle)*(1.0 + std::tan(lode_angle) * std::sin(3.0 * lode_angle) +
238 std::sin(friction_angle) * (std::tan(3.0 * lode_angle) - std::tan(lode_angle)) / std::sqrt(3.0));
240 c1 = 3.0 * (2.0 * std::sin(friction_angle) / (std::sqrt(3.0) * (3.0 - std::sin(friction_angle))));
245 noalias(rFFlux) = c1 * first_vector + c2 * second_vector + c3 * third_vector;
255 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(FRICTION_ANGLE)) <<
"FRICTION_ANGLE is not a defined value" << std::endl;
256 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(FRACTURE_ENERGY)) <<
"FRACTURE_ENERGY is not a defined value" << std::endl;
257 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YOUNG_MODULUS)) <<
"YOUNG_MODULUS is not a defined value" << std::endl;
258 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YIELD_STRESS)) <<
"YIELD_STRESS is not a defined value" << std::endl;
260 return TPlasticPotentialType::Check(rMaterialProperties);
static void CalculateJ2Invariant(const TVector &rStressVector, const double I1, BoundedVectorType &rDeviator, double &rJ2)
This method computes the second invariant of J.
Definition: advanced_constitutive_law_utilities.h:157
static void CalculateSecondVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rSecondVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:100
static void CalculateFirstVector(BoundedVectorType &rFirstVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:80
static void CalculateThirdVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rThirdVector)
This method computes the third vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:131
static void CalculateLodeAngle(const double J2, const double J3, double &rLodeAngle)
This method computes the lode angle.
Definition: advanced_constitutive_law_utilities.cpp:158
static void CalculateI1Invariant(const TVector &rStressVector, double &rI1)
This method computes the first invariant from a given stress vector.
Definition: advanced_constitutive_law_utilities.h:116
static void CalculateJ3Invariant(const BoundedVectorType &rDeviator, double &rJ3)
This method computes the third invariant of J.
Definition: advanced_constitutive_law_utilities.cpp:62
This class defines a yield surface according to Von-Mises theory.
Definition: mohr_coulomb_yield_surface.h:59
static constexpr double tolerance
The machine precision zero tolerance.
Definition: mohr_coulomb_yield_surface.h:77
static constexpr SizeType VoigtSize
The Plastic potential already defines the Voigt size.
Definition: mohr_coulomb_yield_surface.h:71
MohrCoulombYieldSurface()
Initialization constructor.
Definition: mohr_coulomb_yield_surface.h:84
MohrCoulombYieldSurface & operator=(MohrCoulombYieldSurface const &rOther)
Assignment operator.
Definition: mohr_coulomb_yield_surface.h:94
static constexpr SizeType Dimension
The Plastic potential already defines the working simension size.
Definition: mohr_coulomb_yield_surface.h:68
static bool IsWorkingWithTensionThreshold()
This method returns true if the yield surfacecompares with the tension tield stress.
Definition: mohr_coulomb_yield_surface.h:266
virtual ~MohrCoulombYieldSurface()
Destructor.
Definition: mohr_coulomb_yield_surface.h:100
static void CalculateDamageParameter(ConstitutiveLaw::Parameters &rValues, double &rAParameter, const double CharacteristicLength)
This method returns the damage parameter needed in the exp/linear expressions of damage.
Definition: mohr_coulomb_yield_surface.h:161
KRATOS_CLASS_POINTER_DEFINITION(MohrCoulombYieldSurface)
Counted pointer of MohrCoulombYieldSurface.
static int Check(const Properties &rMaterialProperties)
This method defines the check to be performed in the yield surface.
Definition: mohr_coulomb_yield_surface.h:252
static double GetScaleFactorTension(const Properties &rMaterialProperties)
This method returns the scaling factor of the yield surface surfacecompares with the tension tield st...
Definition: mohr_coulomb_yield_surface.h:274
static void CalculatePlasticPotentialDerivative(const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rDerivativePlasticPotential, ConstitutiveLaw::Parameters &rValues)
This method calculates the derivative of the plastic potential DG/DS.
Definition: mohr_coulomb_yield_surface.h:188
static void CalculateEquivalentStress(const array_1d< double, VoigtSize > &rPredictiveStressVector, const Vector &rStrainVector, double &rEquivalentStress, ConstitutiveLaw::Parameters &rValues)
This method the uniaxial equivalent stress.
Definition: mohr_coulomb_yield_surface.h:116
MohrCoulombYieldSurface(MohrCoulombYieldSurface const &rOther)
Copy constructor.
Definition: mohr_coulomb_yield_surface.h:89
static void GetInitialUniaxialThreshold(ConstitutiveLaw::Parameters &rValues, double &rThreshold)
This method returns the initial uniaxial stress threshold.
Definition: mohr_coulomb_yield_surface.h:143
static void CalculateYieldSurfaceDerivative(const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rFFlux, ConstitutiveLaw::Parameters &rValues)
This script calculates the derivatives of the Yield Surf according to NAYAK-ZIENKIEWICZ paper Interna...
Definition: mohr_coulomb_yield_surface.h:210
TPlasticPotentialType PlasticPotentialType
The type of potential plasticity.
Definition: mohr_coulomb_yield_surface.h:65
Properties encapsulates data shared by different Elements or Conditions. It can store any type of dat...
Definition: properties.h:69
bool Has(TVariableType const &rThisVariable) const
Definition: properties.h:578
#define KRATOS_ERROR_IF_NOT(conditional)
Definition: exception.h:163
#define KRATOS_ERROR_IF(conditional)
Definition: exception.h:162
constexpr double Pi
Definition: global_variables.h:25
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
KratosZeroVector< double > ZeroVector
Definition: amatrix_interface.h:561
std::size_t SizeType
The definition of the size type.
Definition: mortar_classes.h:43
T & noalias(T &TheMatrix)
Definition: amatrix_interface.h:484
float J2
Definition: isotropic_damage_automatic_differentiation.py:133
I1
Definition: isotropic_damage_automatic_differentiation.py:230
def J3
Definition: isotropic_damage_automatic_differentiation.py:176
Definition: constitutive_law.h:189
const Properties & GetMaterialProperties()
Definition: constitutive_law.h:457