|
|
| KRATOS_CLASS_POINTER_DEFINITION (CalculateCurvature) |
| Pointer definition of PushStructureProcess. More...
|
|
|
| CalculateCurvature () |
| Default constructor. More...
|
|
virtual | ~CalculateCurvature () |
| Destructor. More...
|
|
|
void | CalculateCurvature2D (ModelPart &ThisModelPart) |
|
void | CalculateCurvature3D (ModelPart &ThisModelPart) |
|
void | CalculateCurvatureContactLine (ModelPart &ThisModelPart) |
|
void | CalculatePrincipalDirections3D (ModelPart &ThisModelPart) |
|
double | CalculateVol (const double x0, const double y0, const double x1, const double y1, const double x2, const double y2) |
|
double | CalculateCurv (const double x0, const double y0, const double x1, const double y1, const double x2, const double y2) |
|
void | IsObtuse (const double x0, const double y0, const double z0, const double x1, const double y1, const double z1, const double x2, const double y2, const double z2, bool &isobt, bool &isobt_i, double &alfa) |
|
void | Vector2D (const double x0, const double y0, const double x1, const double y1, array_1d< double, 2 > &r01) |
|
void | Vector3D (const double x0, const double y0, const double z0, const double x1, const double y1, const double z1, array_1d< double, 3 > &r01) |
|
double | Norm2D (const array_1d< double, 2 > &a) |
|
double | Norm3D (const array_1d< double, 3 > &a) |
|
double | DotProduct2D (const array_1d< double, 2 > &a, const array_1d< double, 2 > &b) |
|
double | DotProduct3D (const array_1d< double, 3 > &a, const array_1d< double, 3 > &b) |
|
void | CrossProduct3D (const array_1d< double, 3 > &a, const array_1d< double, 3 > &b, array_1d< double, 3 > &c) |
|
double | Angle2vecs2D (const array_1d< double, 2 > &a, const array_1d< double, 2 > &b) |
|
double | Angle2vecs3D (const array_1d< double, 3 > &a, const array_1d< double, 3 > &b) |
|
double | cotan (const double &alfa) |
|
double | NormalCurvature3D (const double xi, const double yi, const double zi, const double xj, const double yj, const double zj, array_1d< double, 3 > &n) |
|
void | FindUnitTangent3D (array_1d< double, 3 > &u_vec, array_1d< double, 3 > &n_vec) |
|
void | FindComponentsUV (double &alfa, double &beta, array_1d< double, 3 > &dij, array_1d< double, 3 > &u_vec, array_1d< double, 3 > &v_vec) |
|
void | SolveSys2x2 (double &a, double &b, boost::numeric::ublas::bounded_matrix< double, 2, 2 > &LHSmat, array_1d< double, 2 > &RHSvec) |
|
void | SolveSys3x3 (double &a, double &b, double &c, boost::numeric::ublas::bounded_matrix< double, 3, 3 > &LHSmat, array_1d< double, 3 > &RHSvec) |
|
void | AddTermsToSys (double &kappaN_ij, double &kappa_H, double &alfa, double &beta, int &num_neighbs, boost::numeric::ublas::bounded_matrix< double, 2, 2 > &LHSmat, array_1d< double, 2 > &RHSvec, const int &option) |
|
void | AddTermsToEq2 (double &kappaN_ij, double &kappa_H, double &alfa, double &beta, int &num_neighbs, array_1d< double, 6 > &terms_vec, array_1d< double, 10 > &terms_vec_der) |
|
void | SolveEq2ndDeg (double &A, double &B, double &C, double &a) |
|
void | NewtonMethod (array_1d< double, 6 > &terms_vec, array_1d< double, 10 > &terms_vec_der, double &a, double &kappa_H, double &kappa_G, double &kappaN_ij) |
|
double | func_Newton (double &x, array_1d< double, 6 > &terms_vec, double &kappa_H, double &kappa_G, double &kappaN_ij) |
|
double | dxfunc_Newton (double &x, array_1d< double, 10 > &tvder, double &kappa_H, double &kappa_G, double &kappaN_ij) |
|
double | f_a (double &x, double &kappa_H, double &kappa_G) |
|
double | df_a (double &x, double &kappa_H) |
|
double | Det2x2 (boost::numeric::ublas::bounded_matrix< double, 2, 2 > &input) |
|
double | Det3x3 (boost::numeric::ublas::bounded_matrix< double, 3, 3 > &input) |
|
void | NormalizeVec2D (array_1d< double, 2 > &input) |
|
void | NormalizeVec3D (array_1d< double, 3 > &input) |
|
void | CopyMatrix3x3 (boost::numeric::ublas::bounded_matrix< double, 3, 3 > &input, boost::numeric::ublas::bounded_matrix< double, 3, 3 > &output) |
|
void | CopyMatrix2x2 (boost::numeric::ublas::bounded_matrix< double, 2, 2 > &input, boost::numeric::ublas::bounded_matrix< double, 2, 2 > &output) |
|
bool | GetNeighbours (array_1d< double, 2 > n_node, GlobalPointersVector< Node > &neighb, double &x1, double &y1, double &x2, double &y2, int &i_neck, int &neighnum) |
|
|
virtual std::string | Info () const |
| Turn back information as a string. More...
|
|
virtual void | PrintInfo (std::ostream &rOStream) const |
| Print information about this object. More...
|
|
virtual void | PrintData (std::ostream &rOStream) const |
| Print object's data. More...
|
|
| KRATOS_CLASS_POINTER_DEFINITION (Process) |
| Pointer definition of Process. More...
|
|
| Process () |
| Default constructor. More...
|
|
| Process (const Flags options) |
|
| ~Process () override |
| Destructor. More...
|
|
void | operator() () |
| This operator is provided to call the process as a function and simply calls the Execute method. More...
|
|
virtual Process::Pointer | Create (Model &rModel, Parameters ThisParameters) |
| This method creates an pointer of the process. More...
|
|
virtual void | Execute () |
| Execute method is used to execute the Process algorithms. More...
|
|
virtual void | ExecuteInitialize () |
| This function is designed for being called at the beginning of the computations right after reading the model and the groups. More...
|
|
virtual void | ExecuteBeforeSolutionLoop () |
| This function is designed for being execute once before the solution loop but after all of the solvers where built. More...
|
|
virtual void | ExecuteInitializeSolutionStep () |
| This function will be executed at every time step BEFORE performing the solve phase. More...
|
|
virtual void | ExecuteFinalizeSolutionStep () |
| This function will be executed at every time step AFTER performing the solve phase. More...
|
|
virtual void | ExecuteBeforeOutputStep () |
| This function will be executed at every time step BEFORE writing the output. More...
|
|
virtual void | ExecuteAfterOutputStep () |
| This function will be executed at every time step AFTER writing the output. More...
|
|
virtual void | ExecuteFinalize () |
| This function is designed for being called at the end of the computations. More...
|
|
virtual int | Check () |
| This function is designed for being called after ExecuteInitialize ONCE to verify that the input is correct. More...
|
|
virtual void | Clear () |
| This method clears the assignation of the conditions. More...
|
|
virtual const Parameters | GetDefaultParameters () const |
| This method provides the defaults parameters to avoid conflicts between the different constructors. More...
|
|
Flags & | operator= (Flags const &rOther) |
| Assignment operator. More...
|
|
| operator bool () const |
|
Flags | operator~ () const |
|
bool | operator! () const |
|
void | AssignFlags (Flags const &rOther) |
|
void | Set (const Flags ThisFlag) |
|
void | Set (const Flags ThisFlag, bool Value) |
|
void | Reset (const Flags ThisFlag) |
|
void | Flip (const Flags ThisFlag) |
|
void | SetPosition (IndexType Position, bool Value=true) |
|
bool | GetPosition (IndexType Position) const |
|
void | FlipPosition (IndexType Position) |
|
void | ClearPosition (IndexType Position) |
|
void | Clear () |
|
Flags | AsFalse () const |
|
bool | Is (Flags const &rOther) const |
|
bool | IsDefined (Flags const &rOther) const |
|
bool | IsNot (Flags const &rOther) const |
|
bool | IsNotDefined (Flags const &rOther) const |
|
| KRATOS_CLASS_POINTER_DEFINITION (Flags) |
| Pointer definition of Flags. More...
|
|
const Flags & | operator|= (const Flags &Other) |
|
const Flags & | operator&= (const Flags &Other) |
|
| Flags () |
| Default constructor. More...
|
|
| Flags (Flags const &rOther) |
| Copy constructor. More...
|
|
virtual | ~Flags () |
| Destructor. More...
|
|
Short class definition.
Detail class definition. calculate curvature for 2D and 3D.
curvature for 2D is calcualted based on equation (14) in the follwoing reference: Jarauta A, Ryzhakov P, Secanell M, Waghmare PR, Pons-Prats J. Numerical study of droplet dynamics in a polymer electrolyte fuel cell gas channel using an embedded Eulerian-Lagrangian approach. Journal of Power Sources. 2016 Aug 15;323:201-12.
curvature for 3D is based on Mayer approach in the follwoing reference: M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential geometry operators for triangulated 2-manifolds. Visualization and Math. III, pages 35–57, 2003.