14 #if !defined(KRATOS_ELEMENT_UTILITIES )
15 #define KRATOS_ELEMENT_UTILITIES
49 for(
unsigned int i=0;
i<3;
i++)
51 rVector[0] += Ncontainer(GPoint,
i)*VariableWithComponents[
i][0];
52 rVector[1] += Ncontainer(GPoint,
i)*VariableWithComponents[
i][1];
66 for(
unsigned int i=0;
i<4;
i++)
68 rVector[0] += Ncontainer(GPoint,
i)*VariableWithComponents[
i][0];
69 rVector[1] += Ncontainer(GPoint,
i)*VariableWithComponents[
i][1];
81 for(
unsigned int i=0;
i<4;
i++)
83 rVector[0] += Ncontainer(GPoint,
i)*VariableWithComponents[
i][0];
84 rVector[1] += Ncontainer(GPoint,
i)*VariableWithComponents[
i][1];
85 rVector[2] += Ncontainer(GPoint,
i)*VariableWithComponents[
i][2];
96 for(
unsigned int i=0;
i<8;
i++)
98 rVector[0] += Ncontainer(GPoint,
i)*VariableWithComponents[
i][0];
99 rVector[1] += Ncontainer(GPoint,
i)*VariableWithComponents[
i][1];
100 rVector[2] += Ncontainer(GPoint,
i)*VariableWithComponents[
i][2];
108 rOutputValue[0] = ComputedValue[0];
109 rOutputValue[1] = ComputedValue[1];
110 rOutputValue[2] = 0.0;
117 rOutputValue[0] = ComputedValue[0];
118 rOutputValue[1] = ComputedValue[1];
119 rOutputValue[2] = ComputedValue[2];
136 rExtrapolationMatrix(0,0) = 1.6666666666666666666; rExtrapolationMatrix(0,1) = -0.33333333333333333333; rExtrapolationMatrix(0,2) = -0.33333333333333333333;
137 rExtrapolationMatrix(1,0) = -0.33333333333333333333; rExtrapolationMatrix(1,1) = 1.6666666666666666666; rExtrapolationMatrix(1,2) = -0.33333333333333333333;
138 rExtrapolationMatrix(2,0) = -0.33333333333333333333; rExtrapolationMatrix(2,1) = -0.33333333333333333333; rExtrapolationMatrix(2,2) = 1.6666666666666666666;
148 rExtrapolationMatrix(0,0) = 1.8660254037844386; rExtrapolationMatrix(0,1) = -0.5; rExtrapolationMatrix(0,2) = 0.13397459621556132; rExtrapolationMatrix(0,3) = -0.5;
149 rExtrapolationMatrix(1,0) = -0.5; rExtrapolationMatrix(1,1) = 1.8660254037844386; rExtrapolationMatrix(1,2) = -0.5; rExtrapolationMatrix(1,3) = 0.13397459621556132;
150 rExtrapolationMatrix(2,0) = 0.13397459621556132; rExtrapolationMatrix(2,1) = -0.5; rExtrapolationMatrix(2,2) = 1.8660254037844386; rExtrapolationMatrix(2,3) = -0.5;
151 rExtrapolationMatrix(3,0) = -0.5; rExtrapolationMatrix(3,1) = 0.13397459621556132; rExtrapolationMatrix(3,2) = -0.5; rExtrapolationMatrix(3,3) = 1.8660254037844386;
161 rExtrapolationMatrix(0,0) = -0.309016988749894905; rExtrapolationMatrix(0,1) = -0.3090169887498949046; rExtrapolationMatrix(0,2) = -0.309016988749894905; rExtrapolationMatrix(0,3) = 1.9270509662496847144;
162 rExtrapolationMatrix(1,0) = 1.9270509662496847144; rExtrapolationMatrix(1,1) = -0.30901698874989490481; rExtrapolationMatrix(1,2) = -0.3090169887498949049; rExtrapolationMatrix(1,3) = -0.30901698874989490481;
163 rExtrapolationMatrix(2,0) = -0.30901698874989490473; rExtrapolationMatrix(2,1) = 1.9270509662496847143; rExtrapolationMatrix(2,2) = -0.3090169887498949049; rExtrapolationMatrix(2,3) = -0.30901698874989490481;
164 rExtrapolationMatrix(3,0) = -0.3090169887498949048; rExtrapolationMatrix(3,1) = -0.30901698874989490471; rExtrapolationMatrix(3,2) = 1.9270509662496847143; rExtrapolationMatrix(3,3) = -0.30901698874989490481;
174 rExtrapolationMatrix(0,0) = 2.549038105676658; rExtrapolationMatrix(0,1) = -0.6830127018922192; rExtrapolationMatrix(0,2) = 0.18301270189221927; rExtrapolationMatrix(0,3) = -0.6830127018922192;
175 rExtrapolationMatrix(0,4) = -0.6830127018922192; rExtrapolationMatrix(0,5) = 0.18301270189221927; rExtrapolationMatrix(0,6) = -0.04903810567665795; rExtrapolationMatrix(0,7) = 0.18301270189221927;
177 rExtrapolationMatrix(1,0) = -0.6830127018922192; rExtrapolationMatrix(1,1) = 2.549038105676658; rExtrapolationMatrix(1,2) = -0.6830127018922192; rExtrapolationMatrix(1,3) = 0.18301270189221927;
178 rExtrapolationMatrix(1,4) = 0.18301270189221927; rExtrapolationMatrix(1,5) = -0.6830127018922192; rExtrapolationMatrix(1,6) = 0.18301270189221927; rExtrapolationMatrix(1,7) = -0.04903810567665795;
180 rExtrapolationMatrix(2,0) = 0.18301270189221927; rExtrapolationMatrix(2,1) = -0.6830127018922192; rExtrapolationMatrix(2,2) = 2.549038105676658; rExtrapolationMatrix(2,3) = -0.6830127018922192;
181 rExtrapolationMatrix(2,4) = -0.04903810567665795; rExtrapolationMatrix(2,5) = 0.18301270189221927; rExtrapolationMatrix(2,6) = -0.6830127018922192; rExtrapolationMatrix(2,7) = 0.18301270189221927;
183 rExtrapolationMatrix(3,0) = -0.6830127018922192; rExtrapolationMatrix(3,1) = 0.18301270189221927; rExtrapolationMatrix(3,2) = -0.6830127018922192; rExtrapolationMatrix(3,3) = 2.549038105676658;
184 rExtrapolationMatrix(3,4) = 0.18301270189221927; rExtrapolationMatrix(3,5) = -0.04903810567665795; rExtrapolationMatrix(3,6) = 0.18301270189221927; rExtrapolationMatrix(3,7) = -0.6830127018922192;
186 rExtrapolationMatrix(4,0) = -0.6830127018922192; rExtrapolationMatrix(4,1) = 0.18301270189221927; rExtrapolationMatrix(4,2) = -0.04903810567665795; rExtrapolationMatrix(4,3) = 0.18301270189221927;
187 rExtrapolationMatrix(4,4) = 2.549038105676658; rExtrapolationMatrix(4,5) = -0.6830127018922192; rExtrapolationMatrix(4,6) = 0.18301270189221927; rExtrapolationMatrix(4,7) = -0.6830127018922192;
189 rExtrapolationMatrix(5,0) = 0.18301270189221927; rExtrapolationMatrix(5,1) = -0.6830127018922192; rExtrapolationMatrix(5,2) = 0.18301270189221927; rExtrapolationMatrix(5,3) = -0.04903810567665795;
190 rExtrapolationMatrix(5,4) = -0.6830127018922192; rExtrapolationMatrix(5,5) = 2.549038105676658; rExtrapolationMatrix(5,6) = -0.6830127018922192; rExtrapolationMatrix(5,7) = 0.18301270189221927;
192 rExtrapolationMatrix(6,0) = -0.04903810567665795; rExtrapolationMatrix(6,1) = 0.18301270189221927; rExtrapolationMatrix(6,2) = -0.6830127018922192; rExtrapolationMatrix(6,3) = 0.18301270189221927;
193 rExtrapolationMatrix(6,4) = 0.18301270189221927; rExtrapolationMatrix(6,5) = -0.6830127018922192; rExtrapolationMatrix(6,6) = 2.549038105676658; rExtrapolationMatrix(6,7) = -0.6830127018922192;
195 rExtrapolationMatrix(7,0) = 0.18301270189221927; rExtrapolationMatrix(7,1) = -0.04903810567665795; rExtrapolationMatrix(7,2) = 0.18301270189221927; rExtrapolationMatrix(7,3) = -0.6830127018922192;
196 rExtrapolationMatrix(7,4) = -0.6830127018922192; rExtrapolationMatrix(7,5) = 0.18301270189221927; rExtrapolationMatrix(7,6) = -0.6830127018922192; rExtrapolationMatrix(7,7) = 2.549038105676658;
static void InterpolateVariableWithComponents(array_1d< double, 3 > &rVector, const Matrix &Ncontainer, const array_1d< array_1d< double, 3 >, 8 > &VariableWithComponents, const unsigned int &GPoint)
Definition: element_utilities.hpp:91
static void FillArray1dOutput(array_1d< double, 3 > &rOutputValue, const array_1d< double, 2 > &ComputedValue)
Definition: element_utilities.hpp:106
static void Calculate3DExtrapolationMatrix(BoundedMatrix< double, 8, 8 > &rExtrapolationMatrix)
Definition: element_utilities.hpp:169
static void FillArray1dOutput(array_1d< double, 3 > &rOutputValue, const array_1d< double, 3 > &ComputedValue)
Definition: element_utilities.hpp:115
static void Calculate2DExtrapolationMatrix(BoundedMatrix< double, 4, 4 > &rExtrapolationMatrix)
Definition: element_utilities.hpp:143
static void InterpolateVariableWithComponents(array_1d< double, 2 > &rVector, const Matrix &Ncontainer, const array_1d< array_1d< double, 3 >, 3 > &VariableWithComponents, const unsigned int &GPoint)
Definition: element_utilities.hpp:42
static void Calculate2DExtrapolationMatrix(BoundedMatrix< double, 3, 3 > &rExtrapolationMatrix)
Definition: element_utilities.hpp:131
static void InterpolateVariableWithComponents(array_1d< double, 3 > &rVector, const Matrix &Ncontainer, const array_1d< array_1d< double, 3 >, 4 > &VariableWithComponents, const unsigned int &GPoint)
Definition: element_utilities.hpp:76
static void Calculate3DExtrapolationMatrix(BoundedMatrix< double, 4, 4 > &rExtrapolationMatrix)
Definition: element_utilities.hpp:156
static void InterpolateVariableWithComponents(array_1d< double, 2 > &rVector, const Matrix &Ncontainer, const array_1d< array_1d< double, 3 >, 4 > &VariableWithComponents, const unsigned int &GPoint)
Definition: element_utilities.hpp:59
#define KRATOS_CATCH(MoreInfo)
Definition: define.h:110
#define KRATOS_TRY
Definition: define.h:109
This class includes several utilities necessaries for the computation of the different elements.
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
KratosZeroVector< double > ZeroVector
Definition: amatrix_interface.h:561
T & noalias(T &TheMatrix)
Definition: amatrix_interface.h:484
integer i
Definition: TensorModule.f:17