14 #if !defined(KRATOS_MESH_LOCAL_SMOOTHING_PROCESS_H_INCLUDED )
15 #define KRATOS_MESH_LOCAL_SMOOTHING_PROCESS_H_INCLUDED
73 double AptQuality = 0.5,
74 std::size_t MaxIterationsNumber = 10,
75 const Flags &rBoundaryFlag = BOUNDARY);
90 void Execute()
override;
107 std::string
Info()
const override;
110 void PrintInfo(std::ostream& rOStream)
const override;
113 void PrintData(std::ostream& rOStream)
const override;
168 std::size_t mMaxIterationsNumber;
172 std::size_t mNumberOfLowQualityElements;
174 double mMeshMinQuality;
176 double mMeshQualityNorm;
178 const Flags &mrBoundaryFlag;
195 void SelectLowQualityElementNodes();
197 void PerformSmoothing();
201 void MoveNodeIfImprovesMinimumQuality(
NodeType& rNode,
Point const& OptimumPosition);
249 rOStream << std::endl;
PeriodicInterfaceProcess & operator=(const PeriodicInterfaceProcess &)=delete
std::string Info() const override
Turn back information as a string.
Definition: periodic_interface_process.hpp:93
This class is a vector which stores global pointers.
Definition: global_pointers_vector.h:61
The base class for local smoothing processes providing a laplacian smoothing.
Definition: mesh_local_smoothing_process.h:48
GlobalPointersVector< Node > NeighboursVectorType
Definition: mesh_local_smoothing_process.h:58
Node NodeType
Definition: mesh_local_smoothing_process.h:56
void PrintInfo(std::ostream &rOStream) const override
Print information about this object.
Definition: mesh_local_smoothing_process.cpp:84
std::vector< Point > PointsVectorType
Definition: mesh_local_smoothing_process.h:60
KRATOS_CLASS_POINTER_DEFINITION(MeshLocalSmoothingProcess)
Pointer definition of MeshLocalSmoothingProcess.
void PrintData(std::ostream &rOStream) const override
Print object's data.
Definition: mesh_local_smoothing_process.cpp:90
This class aims to manage meshes for multi-physics simulations.
Definition: model_part.h:77
This class defines the node.
Definition: node.h:65
Point class.
Definition: point.h:59
The base class for all processes in Kratos.
Definition: process.h:49
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
std::istream & operator>>(std::istream &rIStream, LinearMasterSlaveConstraint &rThis)
input stream function
std::ostream & operator<<(std::ostream &rOStream, const LinearMasterSlaveConstraint &rThis)
output stream function
Definition: linear_master_slave_constraint.h:432