56 template <
class TPlasticPotentialType>
76 static constexpr
double tolerance = std::numeric_limits<double>::epsilon();
118 const Vector& rStrainVector,
119 double& rEquivalentStress,
123 double I1,
J2,
J3, lode_angle;
131 rEquivalentStress = 2.0 * std::cos(lode_angle) * std::sqrt(
J2);
146 const double yield_tension = r_material_properties.
Has(YIELD_STRESS) ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_TENSION];
147 rThreshold = std::abs(yield_tension);
159 const double CharacteristicLength
164 const double fracture_energy = r_material_properties[FRACTURE_ENERGY];
165 const double young_modulus = r_material_properties[YOUNG_MODULUS];
166 const bool has_symmetric_yield_stress = r_material_properties.
Has(YIELD_STRESS);
167 const double yield_compression = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_COMPRESSION];
168 const double yield_tension = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_TENSION];
169 const double n = yield_compression / yield_tension;
172 rAParameter = 1.00 / (fracture_energy *
n *
n * young_modulus / (CharacteristicLength * std::pow(yield_compression, 2)) - 0.5);
173 KRATOS_ERROR_IF(rAParameter < 0.0) <<
"Fracture energy is too low, increase FRACTURE_ENERGY..." << std::endl;
175 rAParameter = -std::pow(yield_compression, 2) / (2.0 * young_modulus * fracture_energy *
n *
n / CharacteristicLength);
195 TPlasticPotentialType::CalculatePlasticPotentialDerivative(rPredictiveStressVector, rDeviator,
J2, rDerivativePlasticPotential, rValues);
222 double J3, lode_angle;
226 const double checker = std::abs(lode_angle * 180.0 /
Globals::Pi);
229 if (std::abs(checker) < 29.0) {
230 c2 = 2.0 * (std::cos(lode_angle) + std::sin(lode_angle) * std::tan(3.0 * lode_angle));
231 c3 = std::sqrt(3.0) * std::sin(lode_angle) / (
J2 * std::cos(3.0 * lode_angle));
237 noalias(rFFlux) = c2 * second_vector + c3 * third_vector;
246 if (!rMaterialProperties.
Has(YIELD_STRESS)) {
247 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YIELD_STRESS_TENSION)) <<
"YIELD_STRESS_TENSION is not a defined value" << std::endl;
248 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YIELD_STRESS_COMPRESSION)) <<
"YIELD_STRESS_COMPRESSION is not a defined value" << std::endl;
250 const double yield_compression = rMaterialProperties[YIELD_STRESS_COMPRESSION];
251 const double yield_tension = rMaterialProperties[YIELD_STRESS_TENSION];
253 KRATOS_ERROR_IF(yield_compression <
tolerance) <<
"Yield stress in compression almost zero or negative, include YIELD_STRESS_COMPRESSION in definition";
254 KRATOS_ERROR_IF(yield_tension <
tolerance) <<
"Yield stress in tension almost zero or negative, include YIELD_STRESS_TENSION in definition";
256 const double yield_stress = rMaterialProperties[YIELD_STRESS];
258 KRATOS_ERROR_IF(yield_stress <
tolerance) <<
"Yield stress almost zero or negative, include YIELD_STRESS in definition";
260 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(FRACTURE_ENERGY)) <<
"FRACTURE_ENERGY is not a defined value" << std::endl;
261 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YOUNG_MODULUS)) <<
"YOUNG_MODULUS is not a defined value" << std::endl;
263 return TPlasticPotentialType::Check(rMaterialProperties);
static void CalculateJ2Invariant(const TVector &rStressVector, const double I1, BoundedVectorType &rDeviator, double &rJ2)
This method computes the second invariant of J.
Definition: advanced_constitutive_law_utilities.h:157
static void CalculateSecondVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rSecondVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:100
static void CalculateThirdVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rThirdVector)
This method computes the third vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:131
static void CalculateLodeAngle(const double J2, const double J3, double &rLodeAngle)
This method computes the lode angle.
Definition: advanced_constitutive_law_utilities.cpp:158
static void CalculateI1Invariant(const TVector &rStressVector, double &rI1)
This method computes the first invariant from a given stress vector.
Definition: advanced_constitutive_law_utilities.h:116
static void CalculateJ3Invariant(const BoundedVectorType &rDeviator, double &rJ3)
This method computes the third invariant of J.
Definition: advanced_constitutive_law_utilities.cpp:62
Properties encapsulates data shared by different Elements or Conditions. It can store any type of dat...
Definition: properties.h:69
bool Has(TVariableType const &rThisVariable) const
Definition: properties.h:578
This class defines a yield surface according to Tresca theory.
Definition: tresca_yield_surface.h:58
static void CalculateYieldSurfaceDerivative(const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rFFlux, ConstitutiveLaw::Parameters &rValues)
This script calculates the derivatives of the Yield Surf according to NAYAK-ZIENKIEWICZ paper Interna...
Definition: tresca_yield_surface.h:209
TrescaYieldSurface()
Initialization constructor.
Definition: tresca_yield_surface.h:83
virtual ~TrescaYieldSurface()
Destructor.
Definition: tresca_yield_surface.h:99
TrescaYieldSurface(TrescaYieldSurface const &rOther)
Copy constructor.
Definition: tresca_yield_surface.h:88
static void CalculateDamageParameter(ConstitutiveLaw::Parameters &rValues, double &rAParameter, const double CharacteristicLength)
This method returns the damage parameter needed in the exp/linear expressions of damage.
Definition: tresca_yield_surface.h:156
KRATOS_CLASS_POINTER_DEFINITION(TrescaYieldSurface)
Counted pointer of TrescaYieldSurface.
static bool IsWorkingWithTensionThreshold()
This method returns true if the yield surfacecompares with the tension tield stress.
Definition: tresca_yield_surface.h:269
static constexpr double tolerance
The machine precision zero tolerance.
Definition: tresca_yield_surface.h:76
TPlasticPotentialType PlasticPotentialType
The type of potential plasticity.
Definition: tresca_yield_surface.h:64
static void CalculatePlasticPotentialDerivative(const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rDerivativePlasticPotential, ConstitutiveLaw::Parameters &rValues)
This method calculates the derivative of the plastic potential DG/DS.
Definition: tresca_yield_surface.h:187
static void CalculateEquivalentStress(const array_1d< double, VoigtSize > &rPredictiveStressVector, const Vector &rStrainVector, double &rEquivalentStress, ConstitutiveLaw::Parameters &rValues)
This method the uniaxial equivalent stress.
Definition: tresca_yield_surface.h:116
static constexpr SizeType Dimension
The Plastic potential already defines the working simension size.
Definition: tresca_yield_surface.h:67
static constexpr SizeType VoigtSize
The Plastic potential already defines the Voigt size.
Definition: tresca_yield_surface.h:70
static int Check(const Properties &rMaterialProperties)
This method defines the check to be performed in the yield surface.
Definition: tresca_yield_surface.h:244
static void GetInitialUniaxialThreshold(ConstitutiveLaw::Parameters &rValues, double &rThreshold)
This method returns the initial uniaxial stress threshold.
Definition: tresca_yield_surface.h:139
TrescaYieldSurface & operator=(TrescaYieldSurface const &rOther)
Assignment operator.
Definition: tresca_yield_surface.h:93
static double GetScaleFactorTension(const Properties &rMaterialProperties)
This method returns the scaling factor of the yield surface surfacecompares with the tension tield st...
Definition: tresca_yield_surface.h:277
#define KRATOS_ERROR_IF_NOT(conditional)
Definition: exception.h:163
#define KRATOS_ERROR_IF(conditional)
Definition: exception.h:162
constexpr double Pi
Definition: global_variables.h:25
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
KratosZeroVector< double > ZeroVector
Definition: amatrix_interface.h:561
std::size_t SizeType
The definition of the size type.
Definition: mortar_classes.h:43
T & noalias(T &TheMatrix)
Definition: amatrix_interface.h:484
float J2
Definition: isotropic_damage_automatic_differentiation.py:133
I1
Definition: isotropic_damage_automatic_differentiation.py:230
def J3
Definition: isotropic_damage_automatic_differentiation.py:176
int n
manufactured solution and derivatives (u=0 at z=0 dudz=0 at z=domain_height)
Definition: ode_solve.py:402
Definition: constitutive_law.h:189
const Properties & GetMaterialProperties()
Definition: constitutive_law.h:457