KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
Classes | |
class | Grid1D |
class | FEM_coefficient_matrix_generator |
class | FEM_load_vector_generator |
class | ode_solve |
Functions | |
def | solve (A, rhs) |
def | load (f) |
def | assemble (d, k, ikt1, ikt2, M1, M2, D1, D2, D0) |
def | mult (A, x) |
def | mult_transpose (A, x) |
def | quadrature_points_local (order) |
def | quadrature_weights_local (order) |
Variables | |
int | L = lambda z : z + 1 |
int | dLdz = lambda z : z**0 |
int | t = 0 |
int | dof = 2**10 |
float | domain_height = 0.9 |
tuple | grid = (np.linspace(0,domain_height,dof)/domain_height)**2 *domain_height |
int | d = 1 |
int | k1 = 1 |
int | k2 = 1 |
int | n = 2 |
manufactured solution and derivatives (u=0 at z=0 dudz=0 at z=domain_height) More... | |
tuple | const = (n + 1/2)*np.pi/domain_height |
psi = lambda z : np.sin(const*z) | |
tuple | dpsidz = lambda z : const*np.cos(const*z) |
tuple | d2psidz2 = lambda z : -const**2*np.sin(const*z) |
f | |
kappa = np.vectorize(lambda z: L(z)**2) | |
ode_solve_inst = ode_solve(dof, kappa, domain_height=domain_height, grid=grid) | |
psi_approx = ode_solve_inst(d, f, k1, k2, t=t) | |
z = np.linspace(0,domain_height,len(psi_approx)) | |
def ode_solve.assemble | ( | d, | |
k, | |||
ikt1, | |||
ikt2, | |||
M1, | |||
M2, | |||
D1, | |||
D2, | |||
D0 | |||
) |
def ode_solve.load | ( | f | ) |
def ode_solve.mult | ( | A, | |
x | |||
) |
def ode_solve.mult_transpose | ( | A, | |
x | |||
) |
def ode_solve.quadrature_points_local | ( | order | ) |
def ode_solve.quadrature_weights_local | ( | order | ) |
def ode_solve.solve | ( | A, | |
rhs | |||
) |
tuple ode_solve.const = (n + 1/2)*np.pi/domain_height |
int ode_solve.d = 1 |
int ode_solve.dof = 2**10 |
float ode_solve.domain_height = 0.9 |
ode_solve.f |
tuple ode_solve.grid = (np.linspace(0,domain_height,dof)/domain_height)**2 *domain_height |
int ode_solve.k1 = 1 |
int ode_solve.k2 = 1 |
int ode_solve.n = 2 |
manufactured solution and derivatives (u=0 at z=0 dudz=0 at z=domain_height)
ode_solve.ode_solve_inst = ode_solve(dof, kappa, domain_height=domain_height, grid=grid) |
int ode_solve.t = 0 |
tuple ode_solve.z = np.linspace(0,domain_height,len(psi_approx)) |