KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
Classes | |
class | K_B |
class | K_component |
class | K_sum |
class | Functional |
Functions | |
def | DawsonIntegral (x) |
def | FindZero (f, x0) |
def | ApproximateQuadrature (times, f) |
def | SubstituteRichardsons (approx_successive_values, k, order, level=- 1) |
def | FillUpMatrices (F, ais, tis) |
def | GetExponentialsCoefficients (functional, a0, t0) |
def | TimesToTaus (times) |
def | TausToTimes (taus) |
Variables | |
list | tis = [0.1, 0.3, 1., 3., 5.,10., 40., 190., 1000., 6500., 50000.] |
list | a0 = [0.4 for t in tis] |
int | m = 5 |
int | tol = 1e-9 |
int | tol_residual = 1e-6 |
int | max_iter = 30 |
bool | still_changing = True |
a = np.array(a0 + tis) | |
a_old = np.array(a0 + tis) | |
a_best = np.array(a0 + tis) | |
int | iteration = 0 |
F = Functional() | |
mod_residual = F.Fmod() | |
best_residual = F.F() | |
old_residual = best_residual | |
float | gamma_0 = 0.5 |
grad | |
H_inv | |
p = H_inv.dot(grad) | |
residual = F.F() | |
gradient_norm = sum([abs(float(g)) for g in grad]) | |
def hinsberg_optimization_4.ApproximateQuadrature | ( | times, | |
f | |||
) |
def hinsberg_optimization_4.DawsonIntegral | ( | x | ) |
def hinsberg_optimization_4.FillUpMatrices | ( | F, | |
ais, | |||
tis | |||
) |
def hinsberg_optimization_4.FindZero | ( | f, | |
x0 | |||
) |
def hinsberg_optimization_4.GetExponentialsCoefficients | ( | functional, | |
a0, | |||
t0 | |||
) |
def hinsberg_optimization_4.SubstituteRichardsons | ( | approx_successive_values, | |
k, | |||
order, | |||
level = - 1 |
|||
) |
def hinsberg_optimization_4.TausToTimes | ( | taus | ) |
def hinsberg_optimization_4.TimesToTaus | ( | times | ) |
list hinsberg_optimization_4.a0 = [0.4 for t in tis] |
hinsberg_optimization_4.best_residual = F.F() |
hinsberg_optimization_4.F = Functional() |
float hinsberg_optimization_4.gamma_0 = 0.5 |
hinsberg_optimization_4.grad |
hinsberg_optimization_4.gradient_norm = sum([abs(float(g)) for g in grad]) |
hinsberg_optimization_4.H_inv |
int hinsberg_optimization_4.iteration = 0 |
int hinsberg_optimization_4.m = 5 |
int hinsberg_optimization_4.max_iter = 30 |
hinsberg_optimization_4.mod_residual = F.Fmod() |
hinsberg_optimization_4.old_residual = best_residual |
hinsberg_optimization_4.p = H_inv.dot(grad) |
hinsberg_optimization_4.residual = F.F() |
int hinsberg_optimization_4.still_changing = True |
def hinsberg_optimization_4.tis = [0.1, 0.3, 1., 3., 5.,10., 40., 190., 1000., 6500., 50000.] |
int hinsberg_optimization_4.tol = 1e-9 |
int hinsberg_optimization_4.tol_residual = 1e-6 |