KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
Classes | Functions | Variables
hinsberg_optimization_4 Namespace Reference

Classes

class  K_B
 
class  K_component
 
class  K_sum
 
class  Functional
 

Functions

def DawsonIntegral (x)
 
def FindZero (f, x0)
 
def ApproximateQuadrature (times, f)
 
def SubstituteRichardsons (approx_successive_values, k, order, level=- 1)
 
def FillUpMatrices (F, ais, tis)
 
def GetExponentialsCoefficients (functional, a0, t0)
 
def TimesToTaus (times)
 
def TausToTimes (taus)
 

Variables

list tis = [0.1, 0.3, 1., 3., 5.,10., 40., 190., 1000., 6500., 50000.]
 
list a0 = [0.4 for t in tis]
 
int m = 5
 
int tol = 1e-9
 
int tol_residual = 1e-6
 
int max_iter = 30
 
bool still_changing = True
 
 a = np.array(a0 + tis)
 
 a_old = np.array(a0 + tis)
 
 a_best = np.array(a0 + tis)
 
int iteration = 0
 
 F = Functional()
 
 mod_residual = F.Fmod()
 
 best_residual = F.F()
 
 old_residual = best_residual
 
float gamma_0 = 0.5
 
 grad
 
 H_inv
 
 p = H_inv.dot(grad)
 
 residual = F.F()
 
 gradient_norm = sum([abs(float(g)) for g in grad])
 

Function Documentation

◆ ApproximateQuadrature()

def hinsberg_optimization_4.ApproximateQuadrature (   times,
  f 
)

◆ DawsonIntegral()

def hinsberg_optimization_4.DawsonIntegral (   x)

◆ FillUpMatrices()

def hinsberg_optimization_4.FillUpMatrices (   F,
  ais,
  tis 
)

◆ FindZero()

def hinsberg_optimization_4.FindZero (   f,
  x0 
)

◆ GetExponentialsCoefficients()

def hinsberg_optimization_4.GetExponentialsCoefficients (   functional,
  a0,
  t0 
)

◆ SubstituteRichardsons()

def hinsberg_optimization_4.SubstituteRichardsons (   approx_successive_values,
  k,
  order,
  level = - 1 
)

◆ TausToTimes()

def hinsberg_optimization_4.TausToTimes (   taus)

◆ TimesToTaus()

def hinsberg_optimization_4.TimesToTaus (   times)

Variable Documentation

◆ a

hinsberg_optimization_4.a = np.array(a0 + tis)

◆ a0

list hinsberg_optimization_4.a0 = [0.4 for t in tis]

◆ a_best

hinsberg_optimization_4.a_best = np.array(a0 + tis)

◆ a_old

hinsberg_optimization_4.a_old = np.array(a0 + tis)

◆ best_residual

hinsberg_optimization_4.best_residual = F.F()

◆ F

hinsberg_optimization_4.F = Functional()

◆ gamma_0

float hinsberg_optimization_4.gamma_0 = 0.5

◆ grad

hinsberg_optimization_4.grad

◆ gradient_norm

hinsberg_optimization_4.gradient_norm = sum([abs(float(g)) for g in grad])

◆ H_inv

hinsberg_optimization_4.H_inv

◆ iteration

int hinsberg_optimization_4.iteration = 0

◆ m

int hinsberg_optimization_4.m = 5

◆ max_iter

int hinsberg_optimization_4.max_iter = 30

◆ mod_residual

hinsberg_optimization_4.mod_residual = F.Fmod()

◆ old_residual

hinsberg_optimization_4.old_residual = best_residual

◆ p

hinsberg_optimization_4.p = H_inv.dot(grad)

◆ residual

hinsberg_optimization_4.residual = F.F()

◆ still_changing

int hinsberg_optimization_4.still_changing = True

◆ tis

def hinsberg_optimization_4.tis = [0.1, 0.3, 1., 3., 5.,10., 40., 190., 1000., 6500., 50000.]

◆ tol

int hinsberg_optimization_4.tol = 1e-9

◆ tol_residual

int hinsberg_optimization_4.tol_residual = 1e-6