![]() |
KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
Classes | |
| class | K_B |
| class | K_component |
| class | K_sum |
| class | Functional |
Functions | |
| def | DawsonIntegral (x) |
| def | FindZero (f, x0) |
| def | ApproximateQuadrature (times, f) |
| def | SubstituteRichardsons (approx_successive_values, k, order, level=- 1) |
| def | FillUpMatrices (F, ais, tis) |
| def | GetExponentialsCoefficients (functional, a0, t0) |
| def | TimesToTaus (times) |
| def | TausToTimes (taus) |
Variables | |
| list | tis = [0.1, 0.3, 1., 3., 5.,10., 40., 190., 1000., 6500., 50000.] |
| list | a0 = [0.4 for t in tis] |
| int | m = 5 |
| int | tol = 1e-9 |
| int | tol_residual = 1e-6 |
| int | max_iter = 30 |
| bool | still_changing = True |
| a = np.array(a0 + tis) | |
| a_old = np.array(a0 + tis) | |
| a_best = np.array(a0 + tis) | |
| int | iteration = 0 |
| F = Functional() | |
| mod_residual = F.Fmod() | |
| best_residual = F.F() | |
| old_residual = best_residual | |
| float | gamma_0 = 0.5 |
| grad | |
| H_inv | |
| p = H_inv.dot(grad) | |
| residual = F.F() | |
| gradient_norm = sum([abs(float(g)) for g in grad]) | |
| def hinsberg_optimization_4.ApproximateQuadrature | ( | times, | |
| f | |||
| ) |
| def hinsberg_optimization_4.DawsonIntegral | ( | x | ) |
| def hinsberg_optimization_4.FillUpMatrices | ( | F, | |
| ais, | |||
| tis | |||
| ) |
| def hinsberg_optimization_4.FindZero | ( | f, | |
| x0 | |||
| ) |
| def hinsberg_optimization_4.GetExponentialsCoefficients | ( | functional, | |
| a0, | |||
| t0 | |||
| ) |
| def hinsberg_optimization_4.SubstituteRichardsons | ( | approx_successive_values, | |
| k, | |||
| order, | |||
level = - 1 |
|||
| ) |
| def hinsberg_optimization_4.TausToTimes | ( | taus | ) |
| def hinsberg_optimization_4.TimesToTaus | ( | times | ) |
| list hinsberg_optimization_4.a0 = [0.4 for t in tis] |
| hinsberg_optimization_4.best_residual = F.F() |
| hinsberg_optimization_4.F = Functional() |
| float hinsberg_optimization_4.gamma_0 = 0.5 |
| hinsberg_optimization_4.grad |
| hinsberg_optimization_4.gradient_norm = sum([abs(float(g)) for g in grad]) |
| hinsberg_optimization_4.H_inv |
| int hinsberg_optimization_4.iteration = 0 |
| int hinsberg_optimization_4.m = 5 |
| int hinsberg_optimization_4.max_iter = 30 |
| hinsberg_optimization_4.mod_residual = F.Fmod() |
| hinsberg_optimization_4.old_residual = best_residual |
| hinsberg_optimization_4.p = H_inv.dot(grad) |
| hinsberg_optimization_4.residual = F.F() |
| int hinsberg_optimization_4.still_changing = True |
| def hinsberg_optimization_4.tis = [0.1, 0.3, 1., 3., 5.,10., 40., 190., 1000., 6500., 50000.] |
| int hinsberg_optimization_4.tol = 1e-9 |
| int hinsberg_optimization_4.tol_residual = 1e-6 |