KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
beam_point_rigid_contact_LM_3D_condition.hpp
Go to the documentation of this file.
1 //
2 // Project Name: KratosContactMechanicsApplication $
3 // Created by: $Author: JMCarbonell $
4 // Last modified by: $Co-Author: $
5 // Date: $Date: July 2013 $
6 // Revision: $Revision: 0.0 $
7 //
8 //
9 
10 #if !defined(KRATOS_BEAM_POINT_RIGID_CONTACT_LM_3D_CONDITION_H_INCLUDED )
11 #define KRATOS_BEAM_POINT_RIGID_CONTACT_LM_3D_CONDITION_H_INCLUDED
12 
13 
14 // System includes
15 
16 // External includes
17 
18 // Project includes
19 #include "custom_conditions/thermal_contact/beam_point_rigid_contact_condition.hpp"
20 
21 namespace Kratos
22 {
23 
26 
30 
34 
38 
42 
44 
46 class KRATOS_API(CONTACT_MECHANICS_APPLICATION) BeamPointRigidContactLM3DCondition
48 {
49 protected:
50 
51  typedef struct
52  {
53  bool Slip;
54  double Sign;
55 
56  double DeltaTime;
58 
62 
64 
65 
66 
67 public:
68 
70 
72  //typedef BoundedVector<double, 3> PointType;
74 
76  // Counted pointer of BeamPointRigidContactCondition
79 
83 
85  BeamPointRigidContactLM3DCondition(IndexType NewId, GeometryType::Pointer pGeometry);
86 
87  BeamPointRigidContactLM3DCondition(IndexType NewId, GeometryType::Pointer pGeometry, PropertiesType::Pointer pProperties);
88 
89  BeamPointRigidContactLM3DCondition(IndexType NewId, GeometryType::Pointer pGeometry, PropertiesType::Pointer pProperties, SpatialBoundingBox::Pointer pRigidWall);
90 
91 
94 
95 
98 
99 
103 
104 
108 
116  Condition::Pointer Create(IndexType NewId, NodesArrayType const&
117  ThisNodes, PropertiesType::Pointer pProperties) const;
118 
123  virtual void InitializeSolutionStep(ProcessInfo& rCurrentProcessInfo);
124 
125 
129  virtual void InitializeNonLinearIteration(ProcessInfo& rCurrentProcessInfo);
130 
131  //************* GETTING METHODS
132 
136  void GetDofList(DofsVectorType& rConditionDofList,
137  ProcessInfo& rCurrentProcessInfo );
138 
142  void EquationIdVector(EquationIdVectorType& rResult,
143  ProcessInfo& rCurrentProcessInfo );
144 
148  void GetValuesVector(Vector& rValues,
149  int Step = 0 );
150 
154  void GetFirstDerivativesVector(Vector& rValues,
155  int Step = 0 );
156 
160  void GetSecondDerivativesVector(Vector& rValues,
161  int Step = 0 );
162 
163 
177 
178 protected:
181 
182  // A protected default constructor necessary for serialization
184 
188 
190 
197 
202  void InitializeSystemMatrices(MatrixType& rLeftHandSideMatrix,
203  VectorType& rRightHandSideVector,
204  Flags& rCalculationFlags);
205 
209  void InitializeConditionVariables(ConditionVariables& rVariables,
210  const ProcessInfo& rCurrentProcessInfo);
211 
215  virtual void CalculateKinematics(ConditionVariables& rVariables,
216  const ProcessInfo& rCurrentProcessInfo,
217  const double& rPointNumber);
218 
219 
220 
224  virtual void CalculateAndAddKuug(MatrixType& rLeftHandSideMatrix,
225  ConditionVariables& rVariables,
226  double& rIntegrationWeight);
227 
228  virtual void CalculateAndAddKuugTangent(MatrixType& rLeftHandSideMatrix,
229  ConditionVariables& rVariables,
230  double& rIntegrationWeight);
231 
235  virtual void CalculateAndAddContactForces(Vector& rRightHandSideVector,
236  ConditionVariables& rVariables,
237  double& rIntegrationWeight );
238 
239 
240  virtual void CalculateAndAddNormalContactForce(Vector& rRightHandSideVector, ConditionVariables& rVariables, double& rIntegrationWeight);
241 
242 
243  virtual void CalculateAndAddTangentContactForce(Vector& rRightHandSideVector, ConditionVariables& rVariables, double& rIntegrationWeight);
244 
245 
246  double& CalculateNormalForceModulus( double& rNormalForceModulus, ConditionVariables& rVariables );
247 
248  double& CalculateTangentRelativeMovement( double& rTangentRelativeMovement, ConditionVariables& rVariables );
249 
250  double CalculateCoulombsFrictionLaw( double& rTangentForceModulus, double& rNormalForceModulus, ConditionVariables& rVariables );
251 
252  double CalculateFrictionCoefficient(double & rTangentRelativeMovement);
253 
254 
258  virtual void CalculateContactFactors(ConditionVariables &rContact);
259 
270 
271 private:
274 
278 
282 
283 
287 
288 
292 
293 
297 
301 
302  friend class Serializer;
303 
304  virtual void save(Serializer& rSerializer) const
305  {
307  }
308 
309  virtual void load(Serializer& rSerializer)
310  {
312  }
313 
314 
315 }; // Class BeamPointRigidContactLM3DCondition
316 
318 
321 
322 
326 
327 
329 /* inline std::istream& operator >> (std::istream& rIStream,
330  BeamPointRigidContactLM3DCondition& rThis);
331 */
333 /* inline std::ostream& operator << (std::ostream& rOStream,
334  const BeamPointRigidContactLM3DCondition& rThis)
335  {
336  rThis.PrintInfo(rOStream);
337  rOStream << std::endl;
338  rThis.PrintData(rOStream);
339 
340  return rOStream;
341  }*/
343 
344 } // namespace Kratos.
345 
346 #endif // KRATOS_POINT_RIGID_CONTACT_LM_3D_CONDITION_H_INCLUDED defined
Beam Point Rigid Contact Condition for 3D and 2D geometries. (base class)
Definition: beam_point_rigid_contact_condition.hpp:54
Short class definition.
Definition: beam_point_rigid_contact_LM_3D_condition.hpp:48
KRATOS_CLASS_INTRUSIVE_POINTER_DEFINITION(BeamPointRigidContactLM3DCondition)
TangentialContactVariables mTangentialVariables
Definition: beam_point_rigid_contact_LM_3D_condition.hpp:189
double & CalculateNormalForceModulus(double &rNormalForceModulus, ConditionVariables &rVariables)
array_1d< double, 3 > PointType
Tensor order 1 definition.
Definition: beam_point_rigid_contact_LM_3D_condition.hpp:73
BeamPointRigidContactLM3DCondition()
Definition: beam_point_rigid_contact_LM_3D_condition.hpp:183
std::vector< std::size_t > EquationIdVectorType
Definition: condition.h:98
std::vector< DofType::Pointer > DofsVectorType
Definition: condition.h:100
Definition: flags.h:58
std::size_t IndexType
Definition: flags.h:74
PointerVector is a container like stl vector but using a vector to store pointers to its data.
Definition: pointer_vector.h:72
ProcessInfo holds the current value of different solution parameters.
Definition: process_info.h:59
The serialization consists in storing the state of an object into a storage format like data file or ...
Definition: serializer.h:123
#define KRATOS_SERIALIZE_SAVE_BASE_CLASS(Serializer, BaseType)
Definition: define.h:812
#define KRATOS_SERIALIZE_LOAD_BASE_CLASS(Serializer, BaseType)
Definition: define.h:815
Modeler::Pointer Create(const std::string &ModelerName, Model &rModel, const Parameters ModelParameters)
Checks if the modeler is registered.
Definition: modeler_factory.cpp:30
void InitializeSolutionStep(ConstructionUtility &rThisUtil, std::string ThermalSubModelPartName, std::string MechanicalSubModelPartName, std::string HeatFluxSubModelPartName, std::string HydraulicPressureSubModelPartName, bool thermal_conditions, bool mechanical_conditions, int phase)
Definition: add_custom_utilities_to_python.cpp:45
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
def load(f)
Definition: ode_solve.py:307
Definition: beam_point_rigid_contact_condition.hpp:102
Definition: beam_point_rigid_contact_LM_3D_condition.hpp:52
double DynamicFrictionCoefficient
Definition: beam_point_rigid_contact_LM_3D_condition.hpp:60
double Sign
Definition: beam_point_rigid_contact_LM_3D_condition.hpp:54
double PreviousTangentForceModulus
Definition: beam_point_rigid_contact_LM_3D_condition.hpp:57
double DeltaTime
Definition: beam_point_rigid_contact_LM_3D_condition.hpp:56
double StaticFrictionCoefficient
Definition: beam_point_rigid_contact_LM_3D_condition.hpp:61
bool Slip
Definition: beam_point_rigid_contact_LM_3D_condition.hpp:53
double FrictionCoefficient
Definition: beam_point_rigid_contact_LM_3D_condition.hpp:59