This class defines a yield surface according to Rankine theory.
More...
#include <rankine_yield_surface.h>
|
|
static void | CalculateEquivalentStress (const array_1d< double, VoigtSize > &rPredictiveStressVector, const Vector &rStrainVector, double &rEquivalentStress, ConstitutiveLaw::Parameters &rValues) |
| This method the uniaxial equivalent stress. More...
|
|
static void | GetInitialUniaxialThreshold (ConstitutiveLaw::Parameters &rValues, double &rThreshold) |
| This method returns the initial uniaxial stress threshold. More...
|
|
static void | CalculateDamageParameter (ConstitutiveLaw::Parameters &rValues, double &rAParameter, const double CharacteristicLength) |
| This method returns the damage parameter needed in the exp/linear expressions of damage. More...
|
|
static void | CalculatePlasticPotentialDerivative (const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rPlasticPotential, ConstitutiveLaw::Parameters &rValues) |
| This method calculates the derivative of the plastic potential DG/DS. More...
|
|
static void | CalculateYieldSurfaceDerivative (const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rFFlux, ConstitutiveLaw::Parameters &rValues) |
| This script calculates the derivatives of the Yield Surf according to NAYAK-ZIENKIEWICZ paper International journal for numerical methods in engineering vol 113-135 1972. As: DF/DS = c1*V1 + c2*V2 + c3*V3. More...
|
|
static int | Check (const Properties &rMaterialProperties) |
| This method defines the check to be performed in the yield surface. More...
|
|
static bool | IsWorkingWithTensionThreshold () |
| This method returns true if the yield surfacecompares with the tension tield stress. More...
|
|
static double | GetScaleFactorTension (const Properties &rMaterialProperties) |
| This method returns the scaling factor of the yield surface surfacecompares with the tension tield stress. More...
|
|
template<class TPlasticPotentialType>
class Kratos::RankineYieldSurface< TPlasticPotentialType >
This class defines a yield surface according to Rankine theory.
The Rankine yield surface is formally similar to Mohr-Coulomb but limits the allowed maximum principal stress. It is formed bt a tetrahedron The yield surface requires the definition of the following properties:
◆ PlasticPotentialType
template<class TPlasticPotentialType >
The type of potential plasticity.
◆ RankineYieldSurface() [1/2]
template<class TPlasticPotentialType >
Initialization constructor.
◆ RankineYieldSurface() [2/2]
template<class TPlasticPotentialType >
◆ ~RankineYieldSurface()
template<class TPlasticPotentialType >
◆ CalculateDamageParameter()
template<class TPlasticPotentialType >
This method returns the damage parameter needed in the exp/linear expressions of damage.
- Parameters
-
rAParameter | The damage parameter |
rValues | Parameters of the constitutive law |
CharacteristicLength | The equivalent length of the FE |
◆ CalculateEquivalentStress()
template<class TPlasticPotentialType >
This method the uniaxial equivalent stress.
- Parameters
-
rPredictiveStressVector | The predictive stress vector S = C:(E-Ep) |
rStrainVector | The StrainVector vector |
rValues | Parameters of the constitutive law |
◆ CalculatePlasticPotentialDerivative()
template<class TPlasticPotentialType >
This method calculates the derivative of the plastic potential DG/DS.
- Parameters
-
rPredictiveStressVector | The predictive stress vector S = C:(E-Ep) |
rDeviator | The deviatoric part of the stress vector |
J2 | The second invariant of the Deviator |
rPlasticPotential | The derivative of the plastic potential |
rValues | Parameters of the constitutive law |
◆ CalculateYieldSurfaceDerivative()
template<class TPlasticPotentialType >
This script calculates the derivatives of the Yield Surf according to NAYAK-ZIENKIEWICZ paper International journal for numerical methods in engineering vol 113-135 1972. As: DF/DS = c1*V1 + c2*V2 + c3*V3.
- Parameters
-
rPredictiveStressVector | The predictive stress vector S = C:(E-Ep) |
rDeviator | The deviatoric part of the stress vector |
J2 | The second invariant of the Deviator |
rFFlux | The derivative of the yield surface |
rValues | Parameters of the constitutive law |
◆ Check()
template<class TPlasticPotentialType >
This method defines the check to be performed in the yield surface.
- Returns
- 0 if OK, 1 otherwise
◆ GetInitialUniaxialThreshold()
template<class TPlasticPotentialType >
This method returns the initial uniaxial stress threshold.
- Parameters
-
rThreshold | The uniaxial stress threshold |
rValues | Parameters of the constitutive law |
◆ GetScaleFactorTension()
template<class TPlasticPotentialType >
This method returns the scaling factor of the yield surface surfacecompares with the tension tield stress.
◆ IsWorkingWithTensionThreshold()
template<class TPlasticPotentialType >
This method returns true if the yield surfacecompares with the tension tield stress.
◆ KRATOS_CLASS_POINTER_DEFINITION()
template<class TPlasticPotentialType >
◆ operator=()
template<class TPlasticPotentialType >
◆ Dimension
template<class TPlasticPotentialType >
The Plastic potential already defines the working simension size.
◆ tolerance
template<class TPlasticPotentialType >
The zero tolerance definition.
◆ VoigtSize
template<class TPlasticPotentialType >
The Plastic potential already defines the Voigt size.
The documentation for this class was generated from the following file:
- /home/runner/work/Documentation/Documentation/master/applications/ConstitutiveLawsApplication/custom_constitutive/auxiliary_files/yield_surfaces/rankine_yield_surface.h