KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
List of all members
Kratos::RankineYieldSurface< TPlasticPotentialType > Class Template Reference

This class defines a yield surface according to Rankine theory. More...

#include <rankine_yield_surface.h>

Collaboration diagram for Kratos::RankineYieldSurface< TPlasticPotentialType >:

Public Member Functions

Life Cycle
 RankineYieldSurface ()
 Initialization constructor. More...
 
 RankineYieldSurface (RankineYieldSurface const &rOther)
 Copy constructor. More...
 
RankineYieldSurfaceoperator= (RankineYieldSurface const &rOther)
 Assignment operator. More...
 
virtual ~RankineYieldSurface ()
 Destructor. More...
 

Static Public Member Functions

Operations
static void CalculateEquivalentStress (const array_1d< double, VoigtSize > &rPredictiveStressVector, const Vector &rStrainVector, double &rEquivalentStress, ConstitutiveLaw::Parameters &rValues)
 This method the uniaxial equivalent stress. More...
 
static void GetInitialUniaxialThreshold (ConstitutiveLaw::Parameters &rValues, double &rThreshold)
 This method returns the initial uniaxial stress threshold. More...
 
static void CalculateDamageParameter (ConstitutiveLaw::Parameters &rValues, double &rAParameter, const double CharacteristicLength)
 This method returns the damage parameter needed in the exp/linear expressions of damage. More...
 
static void CalculatePlasticPotentialDerivative (const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rPlasticPotential, ConstitutiveLaw::Parameters &rValues)
 This method calculates the derivative of the plastic potential DG/DS. More...
 
static void CalculateYieldSurfaceDerivative (const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rFFlux, ConstitutiveLaw::Parameters &rValues)
 This script calculates the derivatives of the Yield Surf according to NAYAK-ZIENKIEWICZ paper International journal for numerical methods in engineering vol 113-135 1972. As: DF/DS = c1*V1 + c2*V2 + c3*V3. More...
 
static int Check (const Properties &rMaterialProperties)
 This method defines the check to be performed in the yield surface. More...
 
static bool IsWorkingWithTensionThreshold ()
 This method returns true if the yield surfacecompares with the tension tield stress. More...
 
static double GetScaleFactorTension (const Properties &rMaterialProperties)
 This method returns the scaling factor of the yield surface surfacecompares with the tension tield stress. More...
 

Type Definitions

typedef TPlasticPotentialType PlasticPotentialType
 The type of potential plasticity. More...
 
static constexpr SizeType Dimension = PlasticPotentialType::Dimension
 The Plastic potential already defines the working simension size. More...
 
static constexpr SizeType VoigtSize = PlasticPotentialType::VoigtSize
 The Plastic potential already defines the Voigt size. More...
 
static constexpr double tolerance = std::numeric_limits<double>::epsilon()
 The zero tolerance definition. More...
 
 KRATOS_CLASS_POINTER_DEFINITION (RankineYieldSurface)
 Counted pointer of RankineYieldSurface. More...
 

Detailed Description

template<class TPlasticPotentialType>
class Kratos::RankineYieldSurface< TPlasticPotentialType >

This class defines a yield surface according to Rankine theory.

The Rankine yield surface is formally similar to Mohr-Coulomb but limits the allowed maximum principal stress. It is formed bt a tetrahedron The yield surface requires the definition of the following properties:

Member Typedef Documentation

◆ PlasticPotentialType

template<class TPlasticPotentialType >
typedef TPlasticPotentialType Kratos::RankineYieldSurface< TPlasticPotentialType >::PlasticPotentialType

The type of potential plasticity.

Constructor & Destructor Documentation

◆ RankineYieldSurface() [1/2]

template<class TPlasticPotentialType >
Kratos::RankineYieldSurface< TPlasticPotentialType >::RankineYieldSurface ( )
inline

Initialization constructor.

◆ RankineYieldSurface() [2/2]

template<class TPlasticPotentialType >
Kratos::RankineYieldSurface< TPlasticPotentialType >::RankineYieldSurface ( RankineYieldSurface< TPlasticPotentialType > const &  rOther)
inline

Copy constructor.

◆ ~RankineYieldSurface()

template<class TPlasticPotentialType >
virtual Kratos::RankineYieldSurface< TPlasticPotentialType >::~RankineYieldSurface ( )
inlinevirtual

Destructor.

Member Function Documentation

◆ CalculateDamageParameter()

template<class TPlasticPotentialType >
static void Kratos::RankineYieldSurface< TPlasticPotentialType >::CalculateDamageParameter ( ConstitutiveLaw::Parameters rValues,
double rAParameter,
const double  CharacteristicLength 
)
inlinestatic

This method returns the damage parameter needed in the exp/linear expressions of damage.

Parameters
rAParameterThe damage parameter
rValuesParameters of the constitutive law
CharacteristicLengthThe equivalent length of the FE

◆ CalculateEquivalentStress()

template<class TPlasticPotentialType >
static void Kratos::RankineYieldSurface< TPlasticPotentialType >::CalculateEquivalentStress ( const array_1d< double, VoigtSize > &  rPredictiveStressVector,
const Vector rStrainVector,
double rEquivalentStress,
ConstitutiveLaw::Parameters rValues 
)
inlinestatic

This method the uniaxial equivalent stress.

Parameters
rPredictiveStressVectorThe predictive stress vector S = C:(E-Ep)
rStrainVectorThe StrainVector vector
rValuesParameters of the constitutive law

◆ CalculatePlasticPotentialDerivative()

template<class TPlasticPotentialType >
static void Kratos::RankineYieldSurface< TPlasticPotentialType >::CalculatePlasticPotentialDerivative ( const array_1d< double, VoigtSize > &  rPredictiveStressVector,
const array_1d< double, VoigtSize > &  rDeviator,
const double  J2,
array_1d< double, VoigtSize > &  rPlasticPotential,
ConstitutiveLaw::Parameters rValues 
)
inlinestatic

This method calculates the derivative of the plastic potential DG/DS.

Parameters
rPredictiveStressVectorThe predictive stress vector S = C:(E-Ep)
rDeviatorThe deviatoric part of the stress vector
J2The second invariant of the Deviator
rPlasticPotentialThe derivative of the plastic potential
rValuesParameters of the constitutive law

◆ CalculateYieldSurfaceDerivative()

template<class TPlasticPotentialType >
static void Kratos::RankineYieldSurface< TPlasticPotentialType >::CalculateYieldSurfaceDerivative ( const array_1d< double, VoigtSize > &  rPredictiveStressVector,
const array_1d< double, VoigtSize > &  rDeviator,
const double  J2,
array_1d< double, VoigtSize > &  rFFlux,
ConstitutiveLaw::Parameters rValues 
)
inlinestatic

This script calculates the derivatives of the Yield Surf according to NAYAK-ZIENKIEWICZ paper International journal for numerical methods in engineering vol 113-135 1972. As: DF/DS = c1*V1 + c2*V2 + c3*V3.

Parameters
rPredictiveStressVectorThe predictive stress vector S = C:(E-Ep)
rDeviatorThe deviatoric part of the stress vector
J2The second invariant of the Deviator
rFFluxThe derivative of the yield surface
rValuesParameters of the constitutive law

◆ Check()

template<class TPlasticPotentialType >
static int Kratos::RankineYieldSurface< TPlasticPotentialType >::Check ( const Properties rMaterialProperties)
inlinestatic

This method defines the check to be performed in the yield surface.

Returns
0 if OK, 1 otherwise

◆ GetInitialUniaxialThreshold()

template<class TPlasticPotentialType >
static void Kratos::RankineYieldSurface< TPlasticPotentialType >::GetInitialUniaxialThreshold ( ConstitutiveLaw::Parameters rValues,
double rThreshold 
)
inlinestatic

This method returns the initial uniaxial stress threshold.

Parameters
rThresholdThe uniaxial stress threshold
rValuesParameters of the constitutive law

◆ GetScaleFactorTension()

template<class TPlasticPotentialType >
static double Kratos::RankineYieldSurface< TPlasticPotentialType >::GetScaleFactorTension ( const Properties rMaterialProperties)
inlinestatic

This method returns the scaling factor of the yield surface surfacecompares with the tension tield stress.

◆ IsWorkingWithTensionThreshold()

template<class TPlasticPotentialType >
static bool Kratos::RankineYieldSurface< TPlasticPotentialType >::IsWorkingWithTensionThreshold ( )
inlinestatic

This method returns true if the yield surfacecompares with the tension tield stress.

◆ KRATOS_CLASS_POINTER_DEFINITION()

template<class TPlasticPotentialType >
Kratos::RankineYieldSurface< TPlasticPotentialType >::KRATOS_CLASS_POINTER_DEFINITION ( RankineYieldSurface< TPlasticPotentialType >  )

Counted pointer of RankineYieldSurface.

◆ operator=()

template<class TPlasticPotentialType >
RankineYieldSurface& Kratos::RankineYieldSurface< TPlasticPotentialType >::operator= ( RankineYieldSurface< TPlasticPotentialType > const &  rOther)
inline

Assignment operator.

Member Data Documentation

◆ Dimension

template<class TPlasticPotentialType >
constexpr SizeType Kratos::RankineYieldSurface< TPlasticPotentialType >::Dimension = PlasticPotentialType::Dimension
staticconstexpr

The Plastic potential already defines the working simension size.

◆ tolerance

template<class TPlasticPotentialType >
constexpr double Kratos::RankineYieldSurface< TPlasticPotentialType >::tolerance = std::numeric_limits<double>::epsilon()
staticconstexpr

The zero tolerance definition.

◆ VoigtSize

template<class TPlasticPotentialType >
constexpr SizeType Kratos::RankineYieldSurface< TPlasticPotentialType >::VoigtSize = PlasticPotentialType::VoigtSize
staticconstexpr

The Plastic potential already defines the Voigt size.


The documentation for this class was generated from the following file: