KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
This class defines a plastic potential following the theory of Drucker-Prager. More...
#include <drucker_prager_plastic_potential.h>
Public Member Functions | |
Life Cycle | |
DruckerPragerPlasticPotential () | |
Initialization constructor. More... | |
DruckerPragerPlasticPotential (DruckerPragerPlasticPotential const &rOther) | |
Copy constructor. More... | |
DruckerPragerPlasticPotential & | operator= (DruckerPragerPlasticPotential const &rOther) |
Assignment operator. More... | |
virtual | ~DruckerPragerPlasticPotential () |
Destructor. More... | |
Static Public Member Functions | |
Operations | |
static void | CalculatePlasticPotentialDerivative (const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rGFlux, ConstitutiveLaw::Parameters &rValues) |
This script calculates the derivatives of the plastic potential according to NAYAK-ZIENKIEWICZ paper International journal for numerical methods in engineering vol 113-135 1972. As: DF/DS = c1*V1 + c2*V2 + c3*V3. More... | |
static int | Check (const Properties &rMaterialProperties) |
This method defines the check to be performed in the plastic potential. More... | |
Type Definitions | |
static constexpr SizeType | Dimension = TVoigtSize == 6 ? 3 : 2 |
We define the dimension. More... | |
static constexpr SizeType | VoigtSize = TVoigtSize |
The define the Voigt size. More... | |
KRATOS_CLASS_POINTER_DEFINITION (DruckerPragerPlasticPotential) | |
Counted pointer of DruckerPragerPlasticPotential. More... | |
This class defines a plastic potential following the theory of Drucker-Prager.
When the yield and plastic potential surfaces are plotted in principal stress space the resulting surface will be a circular cone for Drucker-Prager. This means that both yield and strength are dependent on intermediate principal stress, sigma_2 The plastic potential requires the definition of the following properties:
|
inline |
Initialization constructor.
|
inline |
Copy constructor.
|
inlinevirtual |
Destructor.
|
inlinestatic |
This script calculates the derivatives of the plastic potential according to NAYAK-ZIENKIEWICZ paper International journal for numerical methods in engineering vol 113-135 1972. As: DF/DS = c1*V1 + c2*V2 + c3*V3.
rPredictiveStressVector | The predictive stress vector S = C:(E-Ep) |
rDeviator | The deviatoric part of the stress vector |
J2 | The second invariant of the rDeviator |
rGFlux | The derivative of the plastic potential |
rValues | Parameters of the constitutive law |
|
inlinestatic |
This method defines the check to be performed in the plastic potential.
Kratos::DruckerPragerPlasticPotential< TVoigtSize >::KRATOS_CLASS_POINTER_DEFINITION | ( | DruckerPragerPlasticPotential< TVoigtSize > | ) |
Counted pointer of DruckerPragerPlasticPotential.
|
inline |
Assignment operator.
|
staticconstexpr |
We define the dimension.
|
staticconstexpr |
The define the Voigt size.