KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
Classes | |
class | ProblemParameters |
class | HinsbergPointsSetGivenNorm |
Functions | |
def | CalculateErrors (points_set, pp) |
def | ExactErrorTail (points_set, m_index, lower_limit) |
def | K (points_set, m_index, t, pp) |
def | K_dim (points_set, m_index, t, pp) |
def | GetMaxTime (max_a, min_b, m, pp) |
def | PerformQuadratureOfObjectiveFunctionSecondTerm (points_set, m_index, a, b) |
def | ObjectiveFunctionInfinity (points_set, m_index, pp) |
def | ObjectiveFunction (points_set, m_index, pp) |
def | Average (vector_container, current_values, k_calc, pp) |
def initial_time_bounds.Average | ( | vector_container, | |
current_values, | |||
k_calc, | |||
pp | |||
) |
def initial_time_bounds.CalculateErrors | ( | points_set, | |
pp | |||
) |
def initial_time_bounds.ExactErrorTail | ( | points_set, | |
m_index, | |||
lower_limit | |||
) |
def initial_time_bounds.GetMaxTime | ( | max_a, | |
min_b, | |||
m, | |||
pp | |||
) |
def initial_time_bounds.K | ( | points_set, | |
m_index, | |||
t, | |||
pp | |||
) |
def initial_time_bounds.K_dim | ( | points_set, | |
m_index, | |||
t, | |||
pp | |||
) |
def initial_time_bounds.ObjectiveFunction | ( | points_set, | |
m_index, | |||
pp | |||
) |
def initial_time_bounds.ObjectiveFunctionInfinity | ( | points_set, | |
m_index, | |||
pp | |||
) |
def initial_time_bounds.PerformQuadratureOfObjectiveFunctionSecondTerm | ( | points_set, | |
m_index, | |||
a, | |||
b | |||
) |
initial_time_bounds.abs_norm_set = HinsbergPointsSetGivenNorm('abs_norm') |
initial_time_bounds.ax = plt.gca() |
initial_time_bounds.axis |
int initial_time_bounds.big_marker_size = 4 + 3 * (size_factor * k_calc / k_max) ** 1.2 |
initial_time_bounds.color |
initial_time_bounds.Delta_t |
initial_time_bounds.dpi |
initial_time_bounds.end_time |
initial_time_bounds.end_time_minus_tw |
initial_time_bounds.error_norm_type |
initial_time_bounds.exponential_indices |
initial_time_bounds.exponential_numbers |
initial_time_bounds.exponential_numbers_abs_norm = [0] |
initial_time_bounds.exponential_numbers_hinsberg_norm = [0] |
initial_time_bounds.exponential_numbers_t_norm = [0] |
initial_time_bounds.fontsize |
initial_time_bounds.format |
initial_time_bounds.frameon |
initial_time_bounds.hinsberg_set = HinsbergPointsSetGivenNorm('hinsberg_norm') |
initial_time_bounds.initial_number_of_periods |
initial_time_bounds.initial_time |
int initial_time_bounds.k_calc = 1 |
initial_time_bounds.k_max = len(t_ws) |
int initial_time_bounds.k_sample = 0 |
initial_time_bounds.label |
initial_time_bounds.labelpad |
initial_time_bounds.labelsize |
tuple initial_time_bounds.line_width = (size_factor * k_calc / k_max) ** 1.2 |
initial_time_bounds.linestyle |
initial_time_bounds.loc |
float initial_time_bounds.maker_width = 0.75 * (size_factor * k_calc / k_max) ** 1.2 |
initial_time_bounds.marker |
initial_time_bounds.markersize |
initial_time_bounds.n_doublings |
initial_time_bounds.n_samples |
initial_time_bounds.ND_end_time |
list initial_time_bounds.norm_of_bounds_abs_norm = [[]] * len(t_ws) |
list initial_time_bounds.norm_of_bounds_hinsberg_norm = [[]] * len(t_ws) |
list initial_time_bounds.norm_of_bounds_t_norm = [[]] * len(t_ws) |
list initial_time_bounds.norm_of_errors_abs_norm = [[]] * len(t_ws) |
list initial_time_bounds.norm_of_errors_hinsberg_norm = [[]] * len(t_ws) |
list initial_time_bounds.norm_of_errors_t_norm = [[]] * len(t_ws) |
initial_time_bounds.pad |
list initial_time_bounds.phases = [i / pp.n_samples * 2 * math.pi for i in range(pp.n_samples)] |
initial_time_bounds.pp = ProblemParameters() |
initial_time_bounds.prop |
initial_time_bounds.rate_of_change |
initial_time_bounds.size_factor = k_max |
int initial_time_bounds.small_marker_size = 4 + 2 * (size_factor * k_calc / k_max) ** 1.2 |
initial_time_bounds.t_norm_set = HinsbergPointsSetGivenNorm('t_norm') |
initial_time_bounds.t_w |
initial_time_bounds.t_w_min |
list initial_time_bounds.t_ws = [pp.t_w_min * 10 ** k for k in range(pp.n_doublings)] |
initial_time_bounds.which |