54 template <
class TPlasticPotentialType>
76 static constexpr
double tolerance = std::numeric_limits<double>::epsilon();
120 const Vector& rStrainVector,
121 double& rEquivalentStress,
125 double I1,
J2,
J3, lode_angle;
135 rEquivalentStress = (std::cos(lode_angle) - std::sin(lode_angle) * std::sin(friction_angle) / std::sqrt(3.0)) * std::sqrt(
J2) +
136 I1 * std::sin(friction_angle) / 3.0;
150 double friction_angle, cohesion;
155 const double ref_temperature = r_material_properties.Has(REFERENCE_TEMPERATURE) ? r_material_properties[REFERENCE_TEMPERATURE] : rValues.
GetElementGeometry().
GetValue(REFERENCE_TEMPERATURE);
159 rThreshold = cohesion * std::cos(friction_angle);
171 const double CharacteristicLength
180 const double fracture_energy = r_material_properties.
GetValue(FRACTURE_ENERGY, r_geom, r_N, r_process_info);
181 const double young_modulus = r_material_properties.
GetValue(YOUNG_MODULUS, r_geom, r_N, r_process_info);
183 double equivalent_yield;
186 rAParameter = 1.00 / (fracture_energy * young_modulus / (CharacteristicLength * std::pow(equivalent_yield, 2)) - 0.5);
187 KRATOS_ERROR_IF(rAParameter < 0.0) <<
"Fracture Energy is too low, increase FRACTURE_ENERGY..." << std::endl;
189 rAParameter = -std::pow(equivalent_yield, 2) / (2.0 * young_modulus * fracture_energy / CharacteristicLength);
211 TPlasticPotentialType::CalculatePlasticPotentialDerivative(rStressVector, rDeviator,
J2, rDerivativePlasticPotential, rValues);
240 double J3, lode_angle;
245 double checker = std::abs(lode_angle * 180.0 /
Globals::Pi);
247 if (std::abs(checker) < 29.0) {
248 c1 = std::sin(friction_angle) / 3.0;
249 c3 = (std::sqrt(3.0) * std::sin(lode_angle) + std::sin(friction_angle) * std::cos(lode_angle)) /
250 (2.0 *
J2 * std::cos(3.0 * lode_angle));
251 c2 = 0.5 * std::cos(lode_angle)*(1.0 + std::tan(lode_angle) * std::sin(3.0 * lode_angle) +
252 std::sin(friction_angle) * (std::tan(3.0 * lode_angle) - std::tan(lode_angle)) / std::sqrt(3.0));
254 c1 = 3.0 * (2.0 * std::sin(friction_angle) / (std::sqrt(3.0) * (3.0 - std::sin(friction_angle))));
258 noalias(rFFlux) = c1 * first_vector + c2 * second_vector + c3 * third_vector;
This class includes several utilities necessaries for the computation of the constitutive law.
Definition: advanced_constitutive_law_utilities.h:59
static void CalculateJ2Invariant(const TVector &rStressVector, const double I1, BoundedVectorType &rDeviator, double &rJ2)
This method computes the second invariant of J.
Definition: advanced_constitutive_law_utilities.h:157
static void CalculateSecondVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rSecondVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:100
static void CalculateFirstVector(BoundedVectorType &rFirstVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:80
static double GetPropertyFromTemperatureTable(const Variable< double > &rVariable, ConstitutiveLaw::Parameters &rValues, const double Temperature)
This retrieves a double type variable from a table if exists, assumes TEMPERATURE to be the independe...
Definition: advanced_constitutive_law_utilities.cpp:833
static void CalculateThirdVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rThirdVector)
This method computes the third vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:131
static double GetMaterialPropertyThroughAccessor(const Variable< double > &rVariable, ConstitutiveLaw::Parameters &rValues)
This retrieves a double type variable checking the accessor.
Definition: advanced_constitutive_law_utilities.cpp:818
static void CalculateLodeAngle(const double J2, const double J3, double &rLodeAngle)
This method computes the lode angle.
Definition: advanced_constitutive_law_utilities.cpp:158
static void CalculateI1Invariant(const TVector &rStressVector, double &rI1)
This method computes the first invariant from a given stress vector.
Definition: advanced_constitutive_law_utilities.h:116
static void CalculateJ3Invariant(const BoundedVectorType &rDeviator, double &rJ3)
This method computes the third invariant of J.
Definition: advanced_constitutive_law_utilities.cpp:62
TVariableType::Type & GetValue(const TVariableType &rThisVariable)
Definition: geometry.h:627
This class defines a yield surface according to Von-Mises theory.
Definition: mohr_coulomb_yield_surface.h:59
static bool IsWorkingWithTensionThreshold()
This method returns true if the yield surfacecompares with the tension tield stress.
Definition: mohr_coulomb_yield_surface.h:266
static int Check(const Properties &rMaterialProperties)
This method defines the check to be performed in the yield surface.
Definition: mohr_coulomb_yield_surface.h:252
static double GetScaleFactorTension(const Properties &rMaterialProperties)
This method returns the scaling factor of the yield surface surfacecompares with the tension tield st...
Definition: mohr_coulomb_yield_surface.h:274
Properties encapsulates data shared by different Elements or Conditions. It can store any type of dat...
Definition: properties.h:69
TVariableType::Type & GetValue(const TVariableType &rVariable)
Definition: properties.h:228
This class defines a yield surface according to Von-Mises theory.
Definition: thermal_mohr_coulomb_yield_surface.h:56
static int Check(const Properties &rMaterialProperties)
This method defines the check to be performed in the yield surface.
Definition: thermal_mohr_coulomb_yield_surface.h:265
ThermalMohrCoulombYieldSurface()
Initialization constructor.
Definition: thermal_mohr_coulomb_yield_surface.h:86
static void CalculateDamageParameter(ConstitutiveLaw::Parameters &rValues, double &rAParameter, const double CharacteristicLength)
This method returns the damage parameter needed in the exp/linear expressions of damage.
Definition: thermal_mohr_coulomb_yield_surface.h:168
TPlasticPotentialType PlasticPotentialType
The type of potential plasticity.
Definition: thermal_mohr_coulomb_yield_surface.h:62
virtual ~ThermalMohrCoulombYieldSurface()
Destructor.
Definition: thermal_mohr_coulomb_yield_surface.h:102
KRATOS_CLASS_POINTER_DEFINITION(ThermalMohrCoulombYieldSurface)
Counted pointer of MohrCoulombYieldSurface.
static void CalculateYieldSurfaceDerivative(const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rFFlux, ConstitutiveLaw::Parameters &rValues)
This script calculates the derivatives of the Yield Surf according to NAYAK-ZIENKIEWICZ paper Interna...
Definition: thermal_mohr_coulomb_yield_surface.h:225
ThermalMohrCoulombYieldSurface & operator=(ThermalMohrCoulombYieldSurface const &rOther)
Assignment operator.
Definition: thermal_mohr_coulomb_yield_surface.h:96
static double GetScaleFactorTension(const Properties &rMaterialProperties)
This method returns the scaling factor of the yield surface surfacecompares with the tension tield st...
Definition: thermal_mohr_coulomb_yield_surface.h:281
static void GetInitialUniaxialThreshold(ConstitutiveLaw::Parameters &rValues, double &rThreshold)
This method returns the initial uniaxial stress threshold.
Definition: thermal_mohr_coulomb_yield_surface.h:144
static bool IsWorkingWithTensionThreshold()
This method returns true if the yield surfacecompares with the tension tield stress.
Definition: thermal_mohr_coulomb_yield_surface.h:273
static void CalculatePlasticPotentialDerivative(const array_1d< double, VoigtSize > &rStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rDerivativePlasticPotential, ConstitutiveLaw::Parameters &rValues)
This method calculates the derivative of the plastic potential DG/DS.
Definition: thermal_mohr_coulomb_yield_surface.h:203
static constexpr SizeType VoigtSize
The Plastic potential already defines the Voigt size.
Definition: thermal_mohr_coulomb_yield_surface.h:70
ThermalMohrCoulombYieldSurface(ThermalMohrCoulombYieldSurface const &rOther)
Copy constructor.
Definition: thermal_mohr_coulomb_yield_surface.h:91
static void CalculateEquivalentStress(const array_1d< double, VoigtSize > &rStressVector, const Vector &rStrainVector, double &rEquivalentStress, ConstitutiveLaw::Parameters &rValues)
This method the uniaxial equivalent stress.
Definition: thermal_mohr_coulomb_yield_surface.h:118
static constexpr SizeType Dimension
The Plastic potential already defines the working simension size.
Definition: thermal_mohr_coulomb_yield_surface.h:67
static constexpr double tolerance
The machine precision zero tolerance.
Definition: thermal_mohr_coulomb_yield_surface.h:76
#define KRATOS_ERROR_IF(conditional)
Definition: exception.h:162
constexpr double Pi
Definition: global_variables.h:25
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
KratosZeroVector< double > ZeroVector
Definition: amatrix_interface.h:561
std::size_t SizeType
The definition of the size type.
Definition: mortar_classes.h:43
T & noalias(T &TheMatrix)
Definition: amatrix_interface.h:484
float J2
Definition: isotropic_damage_automatic_differentiation.py:133
I1
Definition: isotropic_damage_automatic_differentiation.py:230
def J3
Definition: isotropic_damage_automatic_differentiation.py:176
Definition: constitutive_law.h:189
const GeometryType & GetElementGeometry()
Definition: constitutive_law.h:462
const Vector & GetShapeFunctionsValues()
Definition: constitutive_law.h:419
bool IsSetShapeFunctionsValues()
Definition: constitutive_law.h:483
const ProcessInfo & GetProcessInfo()
Definition: constitutive_law.h:452
const Properties & GetMaterialProperties()
Definition: constitutive_law.h:457