KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
DEM_D_DMT_cohesive_law.h
Go to the documentation of this file.
1 #ifndef DEM_D_DMT_COHESIVE_LAW_H
2 #define DEM_D_DMT_COHESIVE_LAW_H
3 
4 /* Project includes */
6 
7 namespace Kratos {
8 
9  class KRATOS_API(DEM_APPLICATION) DEM_D_DMT_Cohesive_Law : public DEMDiscontinuumConstitutiveLaw {
10 
11  public:
12 
14 
16 
17  virtual ~DEM_D_DMT_Cohesive_Law();
18 
19  DEMDiscontinuumConstitutiveLaw::Pointer Clone() const override;
20 
21  std::unique_ptr<DEMDiscontinuumConstitutiveLaw> CloneUnique() override;
22 
23  double CalculateCohesiveNormalForce(SphericParticle* const element1, SphericParticle* const element2, const double indentation = 0.0) override;
24  double CalculateCohesiveNormalForceWithFEM(SphericParticle* const element, Condition* const wall, const double indentation = 0.0) override;
25 
26  private:
27 
28  friend class Serializer;
29 
30  virtual void save(Serializer& rSerializer) const override {
32  //rSerializer.save("MyMemberName", myMember);
33  }
34 
35  virtual void load(Serializer& rSerializer) override {
37  //rSerializer.load("MyMemberName", myMember);
38  }
39 
40  }; //DEM_D_DMT_Cohesive_Law(const DEM_D_DMT_Cohesive_Law&);
41 
42 } // Namespace Kratos
43 
44 #endif // DEM_D_DMT_COHESIVE_LAW_H defined
Base class for all Conditions.
Definition: condition.h:59
Definition: DEM_D_DMT_cohesive_law.h:9
KRATOS_CLASS_POINTER_DEFINITION(DEM_D_DMT_Cohesive_Law)
Definition: DEM_discontinuum_constitutive_law.h:22
The serialization consists in storing the state of an object into a storage format like data file or ...
Definition: serializer.h:123
Definition: spheric_particle.h:31
#define KRATOS_SERIALIZE_SAVE_BASE_CLASS(Serializer, BaseType)
Definition: define.h:812
#define KRATOS_SERIALIZE_LOAD_BASE_CLASS(Serializer, BaseType)
Definition: define.h:815
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
def load(f)
Definition: ode_solve.py:307
Definition: mesh_converter.cpp:33