![]() |
KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
Variables | |
| bool | do_simplifications = False |
| Settings explanation DIMENSION TO COMPUTE: This symbolic generator is valid for both 2D and 3D cases. More... | |
| string | dim_to_compute = "Both" |
| string | linearisation = "Picard" |
| bool | divide_by_rho = True |
| bool | ASGS_stabilization = True |
| string | mode = "c" |
| string | time_integration = "bdf2" |
| string | output_filename = "droplet_dynamics_element.cpp" |
| string | template_filename = "droplet_dynamics_template.cpp" |
| string | err_msg = "Wrong time_integration. Given \'" + time_integration + "\'. Available option is \'bdf2\'." |
| list | dim_vector = [2] |
| templatefile = open(template_filename) | |
| Read the template file. More... | |
| outstring = templatefile.read() | |
| int | nnodes = 3 |
| int | strain_size = 3 |
| bool | impose_partion_of_unity = False |
| N | |
| DN | |
| DNenr = DefineMatrix('DNenr',nnodes,dim) | |
| Nenr = DefineVector('Nenr',nnodes) | |
| v = DefineMatrix('v',nnodes,dim) | |
| Unknown fields definition. More... | |
| vn = DefineMatrix('vn',nnodes,dim) | |
| vnn = DefineMatrix('vnn',nnodes,dim) | |
| p = DefineVector('p',nnodes) | |
| pn = DefineVector('pn',nnodes) | |
| penr = DefineVector('penr',nnodes) | |
| w = DefineMatrix('w',nnodes,dim) | |
| Test functions definition. More... | |
| q = DefineVector('q',nnodes) | |
| qenr = DefineVector('qenr' ,nnodes) | |
| f = DefineMatrix('f',nnodes,dim) | |
| Other data definitions. More... | |
| fn = DefineMatrix('fn',nnodes,dim) | |
| vmeshn = DefineMatrix('vmeshn',nnodes,dim) | |
| C = DefineSymmetricMatrix('C',strain_size,strain_size) | |
| Constitutive matrix definition. More... | |
| stress = DefineVector('stress',strain_size) | |
| Stress vector definition. More... | |
| dt = sympy.Symbol('dt', positive = True) | |
| Other simbols definition. More... | |
| rho = sympy.Symbol('rho', positive = True) | |
| nu = sympy.Symbol('nu', positive = True) | |
| mu = sympy.Symbol('mu', positive = True) | |
| tau1 = sympy.Symbol('tau1', positive = True) | |
| tau2 = sympy.Symbol('tau2', positive = True) | |
| h = sympy.Symbol('h', positive = True) | |
| dyn_tau = sympy.Symbol('dyn_tau', positive = True) | |
| stab_c1 = sympy.Symbol('stab_c1', positive = True) | |
| stab_c2 = sympy.Symbol('stab_c2', positive = True) | |
| vconv = DefineMatrix('vconv',nnodes,dim) | |
| Convective velocity definition. More... | |
| vmesh = DefineMatrix('vmesh',nnodes,dim) | |
| vconv_gauss = vconv.transpose()*N | |
| float | vconv_gauss_norm = 0.0 |
| Compute the stabilization parameters. More... | |
| bdf0 = sympy.Symbol('bdf0') | |
| Data interpolation to the Gauss points. More... | |
| bdf1 = sympy.Symbol('bdf1') | |
| bdf2 = sympy.Symbol('bdf2') | |
| tuple | acceleration = (bdf0*v +bdf1*vn + bdf2*vnn) |
| v_gauss = v.transpose()*N | |
| f_gauss = f.transpose()*N | |
| p_gauss = p.transpose()*N | |
| Data interpolation to the Gauss points. More... | |
| penr_gauss = penr.transpose()*Nenr | |
| w_gauss = w.transpose()*N | |
| q_gauss = q.transpose()*N | |
| qenr_gauss = qenr.transpose()*Nenr | |
| tuple | accel_gauss = acceleration.transpose()*N |
| grad_v = DN.transpose()*v | |
| Gradients computation. More... | |
| grad_w = DN.transpose()*w | |
| grad_q = DN.transpose()*q | |
| grad_qenr = DNenr.transpose()*qenr | |
| grad_p = DN.transpose()*p | |
| grad_penr = DNenr.transpose()*penr | |
| div_v = div(DN,v) | |
| div_w = div(DN,w) | |
| div_vconv = div(DN,vconv) | |
| grad_sym_v_voigt = grad_sym_voigtform(DN,v) | |
| grad_sym_w_voigt = grad_sym_voigtform(DN,w) | |
| tuple | convective_term = (vconv_gauss.transpose()*grad_v) |
| tuple | rv_galerkin = rho*w_gauss.transpose()*f_gauss - rho*w_gauss.transpose()*accel_gauss - rho*w_gauss.transpose()*convective_term.transpose() - grad_sym_w_voigt.transpose()*stress + div_w*p_gauss |
| Galerkin Functional. More... | |
| tuple | vel_residual = rho*f_gauss - rho*accel_gauss - rho*convective_term.transpose() - grad_p |
| mas_residual = -div_v[0,0] | |
| tuple | vel_subscale = tau1*vel_residual |
| mas_subscale = tau2*mas_residual | |
| tuple | rv_stab = grad_q.transpose()*vel_subscale |
| tuple | rv = rv_galerkin + rv_stab |
| Add the stabilization terms to the original residual terms. More... | |
| dofs = sympy.zeros(nnodes*(dim+1), 1) | |
| Define DOFs and test function vectors. More... | |
| testfunc = sympy.zeros(nnodes*(dim+1), 1) | |
| rhs = Compute_RHS(rv.copy(), testfunc, do_simplifications) | |
| Compute LHS and RHS For the RHS computation one wants the residual of the previous iteration (residual based formulation). More... | |
| rhs_out = OutputVector_CollectingFactors(rhs, "rhs", mode) | |
| lhs = Compute_LHS(rhs, testfunc, dofs, do_simplifications) | |
| lhs_out = OutputMatrix_CollectingFactors(lhs, "lhs", mode) | |
| vel_residual_enr = rho*f_gauss - rho*(accel_gauss + convective_term.transpose()) - grad_p - grad_penr | |
| K V x = b + rhs_eV H Kee penr = rhs_ee. More... | |
| vel_subscale_enr = vel_residual_enr * tau1 | |
| rv_galerkin_enriched = div_w*penr_gauss | |
| rv_stab_enriched = grad_qenr.transpose()*vel_subscale_enr | |
| rv_enriched = rv_galerkin_enriched | |
| dofs_enr = sympy.zeros(nnodes,1) | |
| Add the stabilization terms to the original residual terms. More... | |
| testfunc_enr = sympy.zeros(nnodes,1) | |
| rhs_eV | |
| K V x = b + rhs_eV H Kee penr = rhs_ee. More... | |
| V | |
| rhs_ee | |
| H | |
| Kee | |
| V_out = OutputMatrix_CollectingFactors(V,"V",mode) | |
| H_out = OutputMatrix_CollectingFactors(H,"H",mode) | |
| Kee_out = OutputMatrix_CollectingFactors(Kee,"Kee",mode) | |
| rhs_ee_out = OutputVector_CollectingFactors(rhs_ee,"rhs_ee",mode) | |
| out = open(output_filename,'w') | |
| tuple generate_droplet_dynamics.accel_gauss = acceleration.transpose()*N |
| bool generate_droplet_dynamics.ASGS_stabilization = True |
| generate_droplet_dynamics.bdf0 = sympy.Symbol('bdf0') |
Data interpolation to the Gauss points.
Backward differences coefficients
| generate_droplet_dynamics.bdf1 = sympy.Symbol('bdf1') |
| generate_droplet_dynamics.bdf2 = sympy.Symbol('bdf2') |
| generate_droplet_dynamics.C = DefineSymmetricMatrix('C',strain_size,strain_size) |
Constitutive matrix definition.
| tuple generate_droplet_dynamics.convective_term = (vconv_gauss.transpose()*grad_v) |
| string generate_droplet_dynamics.dim_to_compute = "Both" |
| list generate_droplet_dynamics.dim_vector = [2] |
| bool generate_droplet_dynamics.divide_by_rho = True |
| generate_droplet_dynamics.DN |
| generate_droplet_dynamics.DNenr = DefineMatrix('DNenr',nnodes,dim) |
| bool generate_droplet_dynamics.do_simplifications = False |
Settings explanation DIMENSION TO COMPUTE: This symbolic generator is valid for both 2D and 3D cases.
Since the element has been programed with a dimension template in Kratos, it is advised to set the dim_to_compute flag as "Both". In this case the generated .cpp file will contain both 2D and 3D implementations. LINEARISATION SETTINGS: FullNR considers the convective velocity as "v-vmesh", hence v is taken into account in the derivation of the LHS and RHS. Picard (a.k.a. QuasiNR) considers the convective velocity as "a", thus it is considered as a constant in the derivation of the LHS and RHS. DIVIDE BY RHO: If set to true, divides the mass conservation equation by rho in order to have a better conditioned matrix. Otherwise the original form is kept.
Symbolic generation settings
| generate_droplet_dynamics.dofs = sympy.zeros(nnodes*(dim+1), 1) |
Define DOFs and test function vectors.
| generate_droplet_dynamics.dofs_enr = sympy.zeros(nnodes,1) |
Add the stabilization terms to the original residual terms.
| generate_droplet_dynamics.dt = sympy.Symbol('dt', positive = True) |
Other simbols definition.
| generate_droplet_dynamics.dyn_tau = sympy.Symbol('dyn_tau', positive = True) |
| string generate_droplet_dynamics.err_msg = "Wrong time_integration. Given \'" + time_integration + "\'. Available option is \'bdf2\'." |
| generate_droplet_dynamics.f = DefineMatrix('f',nnodes,dim) |
Other data definitions.
| generate_droplet_dynamics.f_gauss = f.transpose()*N |
| generate_droplet_dynamics.fn = DefineMatrix('fn',nnodes,dim) |
| generate_droplet_dynamics.grad_p = DN.transpose()*p |
| generate_droplet_dynamics.grad_penr = DNenr.transpose()*penr |
| generate_droplet_dynamics.grad_q = DN.transpose()*q |
| generate_droplet_dynamics.grad_qenr = DNenr.transpose()*qenr |
| generate_droplet_dynamics.grad_v = DN.transpose()*v |
Gradients computation.
| generate_droplet_dynamics.grad_w = DN.transpose()*w |
| generate_droplet_dynamics.h = sympy.Symbol('h', positive = True) |
| generate_droplet_dynamics.H |
| generate_droplet_dynamics.H_out = OutputMatrix_CollectingFactors(H,"H",mode) |
| bool generate_droplet_dynamics.impose_partion_of_unity = False |
| generate_droplet_dynamics.Kee |
| generate_droplet_dynamics.Kee_out = OutputMatrix_CollectingFactors(Kee,"Kee",mode) |
| generate_droplet_dynamics.lhs = Compute_LHS(rhs, testfunc, dofs, do_simplifications) |
| generate_droplet_dynamics.lhs_out = OutputMatrix_CollectingFactors(lhs, "lhs", mode) |
| string generate_droplet_dynamics.linearisation = "Picard" |
| generate_droplet_dynamics.mas_residual = -div_v[0,0] |
| generate_droplet_dynamics.mas_subscale = tau2*mas_residual |
| string generate_droplet_dynamics.mode = "c" |
| generate_droplet_dynamics.mu = sympy.Symbol('mu', positive = True) |
| generate_droplet_dynamics.N |
| generate_droplet_dynamics.Nenr = DefineVector('Nenr',nnodes) |
| int generate_droplet_dynamics.nnodes = 3 |
| generate_droplet_dynamics.nu = sympy.Symbol('nu', positive = True) |
| generate_droplet_dynamics.out = open(output_filename,'w') |
| string generate_droplet_dynamics.output_filename = "droplet_dynamics_element.cpp" |
| generate_droplet_dynamics.outstring = templatefile.read() |
| generate_droplet_dynamics.p = DefineVector('p',nnodes) |
| generate_droplet_dynamics.p_gauss = p.transpose()*N |
Data interpolation to the Gauss points.
| generate_droplet_dynamics.penr = DefineVector('penr',nnodes) |
| generate_droplet_dynamics.penr_gauss = penr.transpose()*Nenr |
| generate_droplet_dynamics.pn = DefineVector('pn',nnodes) |
| generate_droplet_dynamics.q = DefineVector('q',nnodes) |
| generate_droplet_dynamics.q_gauss = q.transpose()*N |
| generate_droplet_dynamics.qenr = DefineVector('qenr' ,nnodes) |
| generate_droplet_dynamics.qenr_gauss = qenr.transpose()*Nenr |
| generate_droplet_dynamics.rho = sympy.Symbol('rho', positive = True) |
| generate_droplet_dynamics.rhs = Compute_RHS(rv.copy(), testfunc, do_simplifications) |
Compute LHS and RHS For the RHS computation one wants the residual of the previous iteration (residual based formulation).
By this reason the stress is included as a symbolic variable, which is assumed to be passed as an argument from the previous iteration database.
| generate_droplet_dynamics.rhs_ee |
| generate_droplet_dynamics.rhs_ee_out = OutputVector_CollectingFactors(rhs_ee,"rhs_ee",mode) |
| generate_droplet_dynamics.rhs_eV |
K V x = b + rhs_eV H Kee penr = rhs_ee.
| generate_droplet_dynamics.rhs_out = OutputVector_CollectingFactors(rhs, "rhs", mode) |
| tuple generate_droplet_dynamics.rv = rv_galerkin + rv_stab |
Add the stabilization terms to the original residual terms.
| generate_droplet_dynamics.rv_enriched = rv_galerkin_enriched |
| tuple generate_droplet_dynamics.rv_galerkin = rho*w_gauss.transpose()*f_gauss - rho*w_gauss.transpose()*accel_gauss - rho*w_gauss.transpose()*convective_term.transpose() - grad_sym_w_voigt.transpose()*stress + div_w*p_gauss |
Galerkin Functional.
| generate_droplet_dynamics.rv_galerkin_enriched = div_w*penr_gauss |
| tuple generate_droplet_dynamics.rv_stab = grad_q.transpose()*vel_subscale |
| generate_droplet_dynamics.rv_stab_enriched = grad_qenr.transpose()*vel_subscale_enr |
| generate_droplet_dynamics.stab_c1 = sympy.Symbol('stab_c1', positive = True) |
| generate_droplet_dynamics.stab_c2 = sympy.Symbol('stab_c2', positive = True) |
| int generate_droplet_dynamics.strain_size = 3 |
| generate_droplet_dynamics.stress = DefineVector('stress',strain_size) |
Stress vector definition.
| float generate_droplet_dynamics.tau1 = sympy.Symbol('tau1', positive = True) |
| generate_droplet_dynamics.tau2 = sympy.Symbol('tau2', positive = True) |
| string generate_droplet_dynamics.template_filename = "droplet_dynamics_template.cpp" |
| generate_droplet_dynamics.templatefile = open(template_filename) |
Read the template file.
| generate_droplet_dynamics.testfunc = sympy.zeros(nnodes*(dim+1), 1) |
| generate_droplet_dynamics.testfunc_enr = sympy.zeros(nnodes,1) |
| string generate_droplet_dynamics.time_integration = "bdf2" |
| generate_droplet_dynamics.v = DefineMatrix('v',nnodes,dim) |
Unknown fields definition.
| generate_droplet_dynamics.V |
| generate_droplet_dynamics.v_gauss = v.transpose()*N |
| generate_droplet_dynamics.V_out = OutputMatrix_CollectingFactors(V,"V",mode) |
| generate_droplet_dynamics.vconv = DefineMatrix('vconv',nnodes,dim) |
Convective velocity definition.
| generate_droplet_dynamics.vconv_gauss = vconv.transpose()*N |
| generate_droplet_dynamics.vconv_gauss_norm = 0.0 |
Compute the stabilization parameters.
| tuple generate_droplet_dynamics.vel_residual = rho*f_gauss - rho*accel_gauss - rho*convective_term.transpose() - grad_p |
| generate_droplet_dynamics.vel_residual_enr = rho*f_gauss - rho*(accel_gauss + convective_term.transpose()) - grad_p - grad_penr |
K V x = b + rhs_eV H Kee penr = rhs_ee.
| tuple generate_droplet_dynamics.vel_subscale = tau1*vel_residual |
| generate_droplet_dynamics.vel_subscale_enr = vel_residual_enr * tau1 |
| generate_droplet_dynamics.vmesh = DefineMatrix('vmesh',nnodes,dim) |
| generate_droplet_dynamics.vmeshn = DefineMatrix('vmeshn',nnodes,dim) |
| generate_droplet_dynamics.vn = DefineMatrix('vn',nnodes,dim) |
| generate_droplet_dynamics.vnn = DefineMatrix('vnn',nnodes,dim) |
| generate_droplet_dynamics.w = DefineMatrix('w',nnodes,dim) |
Test functions definition.
| generate_droplet_dynamics.w_gauss = w.transpose()*N |