57 template<
class TPlasticPotentialType>
77 static constexpr
double tolerance = std::numeric_limits<double>::epsilon();
118 const Vector& rStrainVector,
119 double& rEquivalentStress,
125 double friction_angle = r_material_properties[FRICTION_ANGLE] *
Globals::Pi / 180.0;
126 const double sin_phi = std::sin(friction_angle);
127 const double root_3 = std::sqrt(3.0);
132 KRATOS_WARNING(
"DruckerPragerYieldSurface") <<
"Friction Angle not defined, assumed equal to 32 " << std::endl;
143 rEquivalentStress = (
CFL *
TEN0);
158 const double yield_tension = r_material_properties.
Has(YIELD_STRESS) ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_TENSION];
159 const double friction_angle = r_material_properties[FRICTION_ANGLE] *
Globals::Pi / 180.0;
160 const double sin_phi = std::sin(friction_angle);
161 rThreshold = std::abs(yield_tension * (3.0 +
sin_phi) / (3.0 *
sin_phi - 3.0));
173 const double CharacteristicLength
178 const double Gf = r_material_properties[FRACTURE_ENERGY];
179 const double E = r_material_properties[YOUNG_MODULUS];
180 const bool has_symmetric_yield_stress = r_material_properties.
Has(YIELD_STRESS);
181 const double yield_compression = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_COMPRESSION];
182 const double yield_tension = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_TENSION];
183 const double n = yield_compression / yield_tension;
186 rAParameter = 1.00 / (
Gf *
n *
n *
E / (CharacteristicLength * std::pow(yield_compression, 2)) - 0.5);
187 KRATOS_ERROR_IF(rAParameter < 0.0) <<
"Fracture energy is too low, increase FRACTURE_ENERGY..." << std::endl;
189 rAParameter = -std::pow(yield_compression, 2) / (2.0 *
E *
Gf *
n *
n / CharacteristicLength);
209 TPlasticPotentialType::CalculatePlasticPotentialDerivative(rPredictiveStressVector, rDeviator,
J2, rGFlux, rValues);
237 const double friction_angle = r_material_properties[FRICTION_ANGLE] *
Globals::Pi / 180.0;;
238 const double sin_phi = std::sin(friction_angle);
239 const double Root3 = std::sqrt(3.0);
243 const double c2 =
CFL;
245 noalias(rFFlux) = c1 * first_vector + c2 * second_vector;
254 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(FRICTION_ANGLE)) <<
"FRICTION_ANGLE is not a defined value" << std::endl;
255 if (!rMaterialProperties.
Has(YIELD_STRESS)) {
256 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YIELD_STRESS_TENSION)) <<
"YIELD_STRESS_TENSION is not a defined value" << std::endl;
257 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YIELD_STRESS_COMPRESSION)) <<
"YIELD_STRESS_COMPRESSION is not a defined value" << std::endl;
259 const double yield_compression = rMaterialProperties[YIELD_STRESS_COMPRESSION];
260 const double yield_tension = rMaterialProperties[YIELD_STRESS_TENSION];
262 KRATOS_ERROR_IF(yield_compression <
tolerance) <<
"Yield stress in compression almost zero or negative, include YIELD_STRESS_COMPRESSION in definition";
263 KRATOS_ERROR_IF(yield_tension <
tolerance) <<
"Yield stress in tension almost zero or negative, include YIELD_STRESS_TENSION in definition";
265 const double yield_stress = rMaterialProperties[YIELD_STRESS];
267 KRATOS_ERROR_IF(yield_stress <
tolerance) <<
"Yield stress almost zero or negative, include YIELD_STRESS in definition";
269 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(FRACTURE_ENERGY)) <<
"FRACTURE_ENERGY is not a defined value" << std::endl;
270 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YOUNG_MODULUS)) <<
"YOUNG_MODULUS is not a defined value" << std::endl;
272 return TPlasticPotentialType::Check(rMaterialProperties);
291 const double friction_angle = rMaterialProperties[FRICTION_ANGLE] *
Globals::Pi / 180.0;
292 const double sin_phi = std::sin(friction_angle);
static void CalculateJ2Invariant(const TVector &rStressVector, const double I1, BoundedVectorType &rDeviator, double &rJ2)
This method computes the second invariant of J.
Definition: advanced_constitutive_law_utilities.h:157
static void CalculateSecondVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rSecondVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:100
static void CalculateFirstVector(BoundedVectorType &rFirstVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:80
static void CalculateI1Invariant(const TVector &rStressVector, double &rI1)
This method computes the first invariant from a given stress vector.
Definition: advanced_constitutive_law_utilities.h:116
This class defines a yield surface according to Drucker-Prager theory.
Definition: drucker_prager_yield_surface.h:59
static void GetInitialUniaxialThreshold(ConstitutiveLaw::Parameters &rValues, double &rThreshold)
This method returns the initial uniaxial stress threshold.
Definition: drucker_prager_yield_surface.h:151
static bool IsWorkingWithTensionThreshold()
This method returns true if the yield surfacecompares with the tension tield stress.
Definition: drucker_prager_yield_surface.h:279
DruckerPragerYieldSurface & operator=(DruckerPragerYieldSurface const &rOther)
Assignment operator.
Definition: drucker_prager_yield_surface.h:94
static void CalculateEquivalentStress(array_1d< double, VoigtSize > &rPredictiveStressVector, const Vector &rStrainVector, double &rEquivalentStress, ConstitutiveLaw::Parameters &rValues)
This method the uniaxial equivalent stress.
Definition: drucker_prager_yield_surface.h:116
DruckerPragerYieldSurface()
Initialization constructor.
Definition: drucker_prager_yield_surface.h:84
static constexpr SizeType VoigtSize
The Plastic potential already defines the Voigt size.
Definition: drucker_prager_yield_surface.h:71
static int Check(const Properties &rMaterialProperties)
This method defines the check to be performed in the yield surface.
Definition: drucker_prager_yield_surface.h:252
static constexpr double tolerance
The machine precision zero tolerance.
Definition: drucker_prager_yield_surface.h:77
TPlasticPotentialType PlasticPotentialType
The type of potential plasticity.
Definition: drucker_prager_yield_surface.h:65
static constexpr SizeType Dimension
The Plastic potential already defines the working simension size.
Definition: drucker_prager_yield_surface.h:68
KRATOS_CLASS_POINTER_DEFINITION(DruckerPragerYieldSurface)
Counted pointer of DruckerPragerYieldSurface.
virtual ~DruckerPragerYieldSurface()
Destructor.
Definition: drucker_prager_yield_surface.h:100
static double GetScaleFactorTension(const Properties &rMaterialProperties)
This method returns the scaling factor of the yield surface surfacecompares with the tension tield st...
Definition: drucker_prager_yield_surface.h:289
static void CalculateYieldSurfaceDerivative(const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rFFlux, ConstitutiveLaw::Parameters &rValues)
This script calculates the derivatives of the Yield Surf according to NAYAK-ZIENKIEWICZ paper Interna...
Definition: drucker_prager_yield_surface.h:223
static void CalculateDamageParameter(ConstitutiveLaw::Parameters &rValues, double &rAParameter, const double CharacteristicLength)
This method returns the damage parameter needed in the exp/linear expressions of damage.
Definition: drucker_prager_yield_surface.h:170
static void CalculatePlasticPotentialDerivative(const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rGFlux, ConstitutiveLaw::Parameters &rValues)
This method calculates the derivative of the plastic potential DG/DS.
Definition: drucker_prager_yield_surface.h:201
DruckerPragerYieldSurface(DruckerPragerYieldSurface const &rOther)
Copy constructor.
Definition: drucker_prager_yield_surface.h:89
Properties encapsulates data shared by different Elements or Conditions. It can store any type of dat...
Definition: properties.h:69
bool Has(TVariableType const &rThisVariable) const
Definition: properties.h:578
#define KRATOS_ERROR_IF_NOT(conditional)
Definition: exception.h:163
#define KRATOS_ERROR_IF(conditional)
Definition: exception.h:162
#define KRATOS_WARNING(label)
Definition: logger.h:265
constexpr double Pi
Definition: global_variables.h:25
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
std::size_t SizeType
The definition of the size type.
Definition: mortar_classes.h:43
T & noalias(T &TheMatrix)
Definition: amatrix_interface.h:484
E
Definition: generate_hyper_elastic_simo_taylor_neo_hookean.py:26
float J2
Definition: isotropic_damage_automatic_differentiation.py:133
I1
Definition: isotropic_damage_automatic_differentiation.py:230
CFL
Definition: isotropic_damage_automatic_differentiation.py:156
root_3
Definition: isotropic_damage_automatic_differentiation.py:155
Gf
Definition: isotropic_damage_automatic_differentiation.py:135
float TEN0
Definition: isotropic_damage_automatic_differentiation.py:157
sin_phi
Definition: isotropic_damage_automatic_differentiation.py:153
int n
manufactured solution and derivatives (u=0 at z=0 dudz=0 at z=domain_height)
Definition: ode_solve.py:402
Definition: constitutive_law.h:189
const Properties & GetMaterialProperties()
Definition: constitutive_law.h:457