KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
Public Member Functions | Public Attributes | List of all members
empirical_cubature_method.EmpiricalCubatureMethod Class Reference

This class selects a subset of elements and corresponding positive weights necessary for the construction of a hyper-reduced order model Reference: Hernandez 2020. More...

Collaboration diagram for empirical_cubature_method.EmpiricalCubatureMethod:

Public Member Functions

def __init__ (self, ECM_tolerance=0, Filter_tolerance=0, Plotting=False, MaximumNumberUnsuccesfulIterations=100)
 Constructor setting up the parameters for the Element Selection Strategy ECM_tolerance: approximation tolerance for the element selection algorithm Filter_tolerance: parameter limiting the number of candidate points (elements) to those above this tolerance Plotting: whether to plot the error evolution of the element selection algorithm. More...
 
def SetUp (self, ResidualsBasis, InitialCandidatesSet=None, constrain_sum_of_weights=True, constrain_conditions=False, number_of_conditions=0)
 Method for setting up the element selection input: - ResidualsBasis: numpy array containing a basis to the residuals projected. More...
 
def Initialize (self)
 Method performing calculations required before launching the Calculate method. More...
 
def Run (self)
 
def expand_candidates_with_complement (self)
 
def Calculate (self)
 Method launching the element selection algorithm to find a set of elements: self.z, and wiegths: self.w. More...
 

Public Attributes

 ECM_tolerance
 
 Filter_tolerance
 
 Name
 
 Plotting
 
 MaximumNumberUnsuccesfulIterations
 
 W
 
 G
 
 y
 
 add_constrain_count
 
 b
 
 UnsuccesfulIterations
 
 GnormNOONE
 
 y_complement
 
 z
 
 mPOS
 
 r
 
 m
 
 nerror
 
 nerrorACTUAL
 
 success
 
 w
 

Detailed Description

This class selects a subset of elements and corresponding positive weights necessary for the construction of a hyper-reduced order model Reference: Hernandez 2020.

"A multiscale method for periodic structures using domain decomposition and ECM-hyperreduction"

Constructor & Destructor Documentation

◆ __init__()

def empirical_cubature_method.EmpiricalCubatureMethod.__init__ (   self,
  ECM_tolerance = 0,
  Filter_tolerance = 0,
  Plotting = False,
  MaximumNumberUnsuccesfulIterations = 100 
)

Constructor setting up the parameters for the Element Selection Strategy ECM_tolerance: approximation tolerance for the element selection algorithm Filter_tolerance: parameter limiting the number of candidate points (elements) to those above this tolerance Plotting: whether to plot the error evolution of the element selection algorithm.

Member Function Documentation

◆ Calculate()

def empirical_cubature_method.EmpiricalCubatureMethod.Calculate (   self)

Method launching the element selection algorithm to find a set of elements: self.z, and wiegths: self.w.

◆ expand_candidates_with_complement()

def empirical_cubature_method.EmpiricalCubatureMethod.expand_candidates_with_complement (   self)

◆ Initialize()

def empirical_cubature_method.EmpiricalCubatureMethod.Initialize (   self)

Method performing calculations required before launching the Calculate method.

◆ Run()

def empirical_cubature_method.EmpiricalCubatureMethod.Run (   self)

◆ SetUp()

def empirical_cubature_method.EmpiricalCubatureMethod.SetUp (   self,
  ResidualsBasis,
  InitialCandidatesSet = None,
  constrain_sum_of_weights = True,
  constrain_conditions = False,
  number_of_conditions = 0 
)

Method for setting up the element selection input: - ResidualsBasis: numpy array containing a basis to the residuals projected.

  • constrain_sum_of_weights: enable the user to constrain weights to be the sum of the number of entities.
  • constrain_conditions: enable the user to enforce weights to consider conditions (for specific boundary conditions).

Member Data Documentation

◆ add_constrain_count

empirical_cubature_method.EmpiricalCubatureMethod.add_constrain_count

◆ b

empirical_cubature_method.EmpiricalCubatureMethod.b

◆ ECM_tolerance

empirical_cubature_method.EmpiricalCubatureMethod.ECM_tolerance

◆ Filter_tolerance

empirical_cubature_method.EmpiricalCubatureMethod.Filter_tolerance

◆ G

empirical_cubature_method.EmpiricalCubatureMethod.G

◆ GnormNOONE

empirical_cubature_method.EmpiricalCubatureMethod.GnormNOONE

◆ m

empirical_cubature_method.EmpiricalCubatureMethod.m

◆ MaximumNumberUnsuccesfulIterations

empirical_cubature_method.EmpiricalCubatureMethod.MaximumNumberUnsuccesfulIterations

◆ mPOS

empirical_cubature_method.EmpiricalCubatureMethod.mPOS

◆ Name

empirical_cubature_method.EmpiricalCubatureMethod.Name

◆ nerror

empirical_cubature_method.EmpiricalCubatureMethod.nerror

◆ nerrorACTUAL

empirical_cubature_method.EmpiricalCubatureMethod.nerrorACTUAL

◆ Plotting

empirical_cubature_method.EmpiricalCubatureMethod.Plotting

◆ r

empirical_cubature_method.EmpiricalCubatureMethod.r

◆ success

empirical_cubature_method.EmpiricalCubatureMethod.success

◆ UnsuccesfulIterations

empirical_cubature_method.EmpiricalCubatureMethod.UnsuccesfulIterations

◆ W

empirical_cubature_method.EmpiricalCubatureMethod.W

◆ w

empirical_cubature_method.EmpiricalCubatureMethod.w

◆ y

empirical_cubature_method.EmpiricalCubatureMethod.y

◆ y_complement

empirical_cubature_method.EmpiricalCubatureMethod.y_complement

◆ z

empirical_cubature_method.EmpiricalCubatureMethod.z

The documentation for this class was generated from the following file: