![]() |
KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
Functions | |
| def | Mv (nu, X) |
| Matérn kernel. More... | |
| def | Matern_kernel (x, nu=1, rho=1) |
| def | SM_kernel (x, a) |
| Shifted Matern kernel. More... | |
| def | GM_kernel (x, nu, rho, a) |
| Generalized Matern kernel. More... | |
| def | EP_kernel (x, a) |
| Exponential-polynomial kernel. More... | |
| def | vf2tau (vf, sigma=1, strategy=0) |
| Volume fraction to Tau (and vice-versa) More... | |
| def | tau2vf (tau, sigma=1, strategy=0) |
| def | Cov2S2 (tau, g, strategy=0) |
| def | FourierOfGaussian (noise) |
| Fourier Transform of Gaussian Noise. More... | |
| def | compute_Sphericity (V, A) |
| Inclusion geometry. More... | |
| def | Expectation (X) |
| Basic probability tools. More... | |
| def | Variance (X, m=None) |
| def | SpacialCovariance (X) |
| def | compute_ProbaDist (data, bins=None) |
| Compute probability distribution (from data) More... | |
| def | fit_ProbaDist (x, p, type='LogNormal') |
| Fit a probability with LogNormal (or Normal) More... | |
| def | autocorrelation (X) |
| Autocorrelation of an image. More... | |
| def | slope_by_fft (C) |
| def | dens_Exponential (x, lmbda=1) |
| Probability densities. More... | |
| def | dens_Normal (x, m=0, sigma=1) |
| def | dens_LogNormal (x, m=0, sigma=1) |
| def | MC_estimate_Covariance (RandomField, nsamples=100, nbins=None) |
| Estimate covariance using Monte-Carlo. More... | |
| def common.autocorrelation | ( | X | ) |
Autocorrelation of an image.
| def common.compute_ProbaDist | ( | data, | |
bins = None |
|||
| ) |
Compute probability distribution (from data)
| def common.compute_Sphericity | ( | V, | |
| A | |||
| ) |
Inclusion geometry.
| def common.Cov2S2 | ( | tau, | |
| g, | |||
strategy = 0 |
|||
| ) |
| def common.dens_Exponential | ( | x, | |
lmbda = 1 |
|||
| ) |
Probability densities.
| def common.dens_LogNormal | ( | x, | |
m = 0, |
|||
sigma = 1 |
|||
| ) |
| def common.dens_Normal | ( | x, | |
m = 0, |
|||
sigma = 1 |
|||
| ) |
| def common.EP_kernel | ( | x, | |
| a | |||
| ) |
Exponential-polynomial kernel.
| def common.Expectation | ( | X | ) |
Basic probability tools.
| def common.fit_ProbaDist | ( | x, | |
| p, | |||
type = 'LogNormal' |
|||
| ) |
Fit a probability with LogNormal (or Normal)
| def common.FourierOfGaussian | ( | noise | ) |
Fourier Transform of Gaussian Noise.
| def common.GM_kernel | ( | x, | |
| nu, | |||
| rho, | |||
| a | |||
| ) |
Generalized Matern kernel.
| def common.Matern_kernel | ( | x, | |
nu = 1, |
|||
rho = 1 |
|||
| ) |
| def common.MC_estimate_Covariance | ( | RandomField, | |
nsamples = 100, |
|||
nbins = None |
|||
| ) |
Estimate covariance using Monte-Carlo.
| def common.Mv | ( | nu, | |
| X | |||
| ) |
Matérn kernel.
| def common.slope_by_fft | ( | C | ) |
| def common.SM_kernel | ( | x, | |
| a | |||
| ) |
Shifted Matern kernel.
| def common.SpacialCovariance | ( | X | ) |
| def common.tau2vf | ( | tau, | |
sigma = 1, |
|||
strategy = 0 |
|||
| ) |
| def common.Variance | ( | X, | |
m = None |
|||
| ) |
| def common.vf2tau | ( | vf, | |
sigma = 1, |
|||
strategy = 0 |
|||
| ) |
Volume fraction to Tau (and vice-versa)