KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
Functions
common Namespace Reference

Functions

def Mv (nu, X)
 Matérn kernel. More...
 
def Matern_kernel (x, nu=1, rho=1)
 
def SM_kernel (x, a)
 Shifted Matern kernel. More...
 
def GM_kernel (x, nu, rho, a)
 Generalized Matern kernel. More...
 
def EP_kernel (x, a)
 Exponential-polynomial kernel. More...
 
def vf2tau (vf, sigma=1, strategy=0)
 Volume fraction to Tau (and vice-versa) More...
 
def tau2vf (tau, sigma=1, strategy=0)
 
def Cov2S2 (tau, g, strategy=0)
 
def FourierOfGaussian (noise)
 Fourier Transform of Gaussian Noise. More...
 
def compute_Sphericity (V, A)
 Inclusion geometry. More...
 
def Expectation (X)
 Basic probability tools. More...
 
def Variance (X, m=None)
 
def SpacialCovariance (X)
 
def compute_ProbaDist (data, bins=None)
 Compute probability distribution (from data) More...
 
def fit_ProbaDist (x, p, type='LogNormal')
 Fit a probability with LogNormal (or Normal) More...
 
def autocorrelation (X)
 Autocorrelation of an image. More...
 
def slope_by_fft (C)
 
def dens_Exponential (x, lmbda=1)
 Probability densities. More...
 
def dens_Normal (x, m=0, sigma=1)
 
def dens_LogNormal (x, m=0, sigma=1)
 
def MC_estimate_Covariance (RandomField, nsamples=100, nbins=None)
 Estimate covariance using Monte-Carlo. More...
 

Function Documentation

◆ autocorrelation()

def common.autocorrelation (   X)

Autocorrelation of an image.

◆ compute_ProbaDist()

def common.compute_ProbaDist (   data,
  bins = None 
)

Compute probability distribution (from data)

◆ compute_Sphericity()

def common.compute_Sphericity (   V,
  A 
)

Inclusion geometry.

◆ Cov2S2()

def common.Cov2S2 (   tau,
  g,
  strategy = 0 
)

◆ dens_Exponential()

def common.dens_Exponential (   x,
  lmbda = 1 
)

Probability densities.

◆ dens_LogNormal()

def common.dens_LogNormal (   x,
  m = 0,
  sigma = 1 
)

◆ dens_Normal()

def common.dens_Normal (   x,
  m = 0,
  sigma = 1 
)

◆ EP_kernel()

def common.EP_kernel (   x,
  a 
)

Exponential-polynomial kernel.

◆ Expectation()

def common.Expectation (   X)

Basic probability tools.

◆ fit_ProbaDist()

def common.fit_ProbaDist (   x,
  p,
  type = 'LogNormal' 
)

Fit a probability with LogNormal (or Normal)

◆ FourierOfGaussian()

def common.FourierOfGaussian (   noise)

Fourier Transform of Gaussian Noise.

◆ GM_kernel()

def common.GM_kernel (   x,
  nu,
  rho,
  a 
)

Generalized Matern kernel.

◆ Matern_kernel()

def common.Matern_kernel (   x,
  nu = 1,
  rho = 1 
)

◆ MC_estimate_Covariance()

def common.MC_estimate_Covariance (   RandomField,
  nsamples = 100,
  nbins = None 
)

Estimate covariance using Monte-Carlo.

◆ Mv()

def common.Mv (   nu,
  X 
)

Matérn kernel.

◆ slope_by_fft()

def common.slope_by_fft (   C)

◆ SM_kernel()

def common.SM_kernel (   x,
  a 
)

Shifted Matern kernel.

◆ SpacialCovariance()

def common.SpacialCovariance (   X)

◆ tau2vf()

def common.tau2vf (   tau,
  sigma = 1,
  strategy = 0 
)

◆ Variance()

def common.Variance (   X,
  m = None 
)

◆ vf2tau()

def common.vf2tau (   vf,
  sigma = 1,
  strategy = 0 
)

Volume fraction to Tau (and vice-versa)