KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
Functions
common Namespace Reference

Functions

def Mv (nu, X)
 Matérn kernel. More...
 
def Matern_kernel (x, nu=1, rho=1)
 
def SM_kernel (x, a)
 Shifted Matern kernel. More...
 
def GM_kernel (x, nu, rho, a)
 Generalized Matern kernel. More...
 
def EP_kernel (x, a)
 Exponential-polynomial kernel. More...
 
def vf2tau (vf, sigma=1, strategy=0)
 Volume fraction to Tau (and vice-versa) More...
 
def tau2vf (tau, sigma=1, strategy=0)
 
def Cov2S2 (tau, g, strategy=0)
 
def FourierOfGaussian (noise)
 Fourier Transform of Gaussian Noise. More...
 
def compute_Sphericity (V, A)
 Inclusion geometry. More...
 
def Expectation (X)
 Basic probability tools. More...
 
def Variance (X, m=None)
 
def SpacialCovariance (X)
 
def compute_ProbaDist (data, bins=None)
 Compute probability distribution (from data) More...
 
def fit_ProbaDist (x, p, type='LogNormal')
 Fit a probability with LogNormal (or Normal) More...
 
def autocorrelation (X)
 Autocorrelation of an image. More...
 
def slope_by_fft (C)
 
def dens_Exponential (x, lmbda=1)
 Probability densities. More...
 
def dens_Normal (x, m=0, sigma=1)
 
def dens_LogNormal (x, m=0, sigma=1)
 
def MC_estimate_Covariance (RandomField, nsamples=100, nbins=None)
 Estimate covariance using Monte-Carlo. More...
 

Function Documentation

◆ autocorrelation()

def common.autocorrelation (   X)

Autocorrelation of an image.

◆ compute_ProbaDist()

def common.compute_ProbaDist (   data,
  bins = None 
)

Compute probability distribution (from data)

◆ compute_Sphericity()

def common.compute_Sphericity (   V,
  A 
)

Inclusion geometry.

◆ Cov2S2()

def common.Cov2S2 (   tau,
  g,
  strategy = 0 
)

◆ dens_Exponential()

def common.dens_Exponential (   x,
  lmbda = 1 
)

Probability densities.

◆ dens_LogNormal()

def common.dens_LogNormal (   x,
  m = 0,
  sigma = 1 
)

◆ dens_Normal()

def common.dens_Normal (   x,
  m = 0,
  sigma = 1 
)

◆ EP_kernel()

def common.EP_kernel (   x,
  a 
)

Exponential-polynomial kernel.

◆ Expectation()

def common.Expectation (   X)

Basic probability tools.

◆ fit_ProbaDist()

def common.fit_ProbaDist (   x,
  p,
  type = 'LogNormal' 
)

Fit a probability with LogNormal (or Normal)

◆ FourierOfGaussian()

def common.FourierOfGaussian (   noise)

Fourier Transform of Gaussian Noise.

◆ GM_kernel()

def common.GM_kernel (   x,
  nu,
  rho,
  a 
)

Generalized Matern kernel.

◆ Matern_kernel()

def common.Matern_kernel (   x,
  nu = 1,
  rho = 1 
)

◆ MC_estimate_Covariance()

def common.MC_estimate_Covariance (   RandomField,
  nsamples = 100,
  nbins = None 
)

Estimate covariance using Monte-Carlo.

◆ Mv()

def common.Mv (   nu,
  X 
)

Matérn kernel.

◆ slope_by_fft()

def common.slope_by_fft (   C)

◆ SM_kernel()

def common.SM_kernel (   x,
  a 
)

Shifted Matern kernel.

◆ SpacialCovariance()

def common.SpacialCovariance (   X)

◆ tau2vf()

def common.tau2vf (   tau,
  sigma = 1,
  strategy = 0 
)

◆ Variance()

def common.Variance (   X,
  m = None 
)

◆ vf2tau()

def common.vf2tau (   vf,
  sigma = 1,
  strategy = 0 
)

Volume fraction to Tau (and vice-versa)