KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
Namespaces | Functions | Variables
kernel_approximation_error.py File Reference

Namespaces

 kernel_approximation_error
 

Functions

def kernel_approximation_error.ExactIntegrationOfSinus (t, a=None, b=None)
 
def kernel_approximation_error.ExactIntegrationOfSinusWithExponentialKernel (ti, t, a, b)
 
def kernel_approximation_error.IntegrationWithSumOfExponentialsKernel (t, a, b, ais, tis)
 

Variables

float kernel_approximation_error.t = 5.0
 
float kernel_approximation_error.t_win = 3.0
 
string kernel_approximation_error.t0 = "MinusInfinity"
 
float kernel_approximation_error.t_tail = t - t_win
 
list kernel_approximation_error.best_as = []
 
list kernel_approximation_error.best_ts = []
 
list kernel_approximation_error.error_bounds = []
 
list kernel_approximation_error.best_as_L1 = []
 
list kernel_approximation_error.best_ts_L1 = []
 
list kernel_approximation_error.error_bounds_L1 = []
 
list kernel_approximation_error.hinsberg_as = [0.23477481312586, 0.28549576238194, 0.28479416718255, 0.26149775537574, 0.32056200511938, 0.35354490689146, 0.39635904496921, 0.42253908596514, 0.48317384225265, 0.63661146557001]
 
list kernel_approximation_error.hinsberg_ts = [0.1, 0.3, 1., 3., 10., 40., 190., 1000., 6500., 50000.]
 
list kernel_approximation_error.numbers = []
 
list kernel_approximation_error.errors = []
 
 kernel_approximation_error.exact_integral = float(ExactIntegrationOfSinus(t, t0, t_tail))
 
list kernel_approximation_error.ais = best_as[i]
 
list kernel_approximation_error.tis = best_ts[i]
 
 kernel_approximation_error.m = len(ais)
 
 kernel_approximation_error.approximate_inegral = float(IntegrationWithSumOfExponentialsKernel(t, t0, t_tail, ais, tis))
 
list kernel_approximation_error.numbers_L1 = []
 
list kernel_approximation_error.errors_L1 = []
 
list kernel_approximation_error.window_kernel_errors = [exact_integral for a in best_as_L1]
 
 kernel_approximation_error.approximate_inegral_hinsberg = float(IntegrationWithSumOfExponentialsKernel(t, t0, t_tail, hinsberg_as, hinsberg_ts))
 
 kernel_approximation_error.error_hinsberg = abs(exact_integral - approximate_inegral_hinsberg) * math.sqrt(t_win)
 
 kernel_approximation_error.label