![]() |
KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
Functions | |
| def | ExactIntegrationOfSinus (t, a=None, b=None) |
| def | ExactIntegrationOfSinusWithExponentialKernel (ti, t, a, b) |
| def | IntegrationWithSumOfExponentialsKernel (t, a, b, ais, tis) |
Variables | |
| float | t = 5.0 |
| float | t_win = 3.0 |
| string | t0 = "MinusInfinity" |
| float | t_tail = t - t_win |
| list | best_as = [] |
| list | best_ts = [] |
| list | error_bounds = [] |
| list | best_as_L1 = [] |
| list | best_ts_L1 = [] |
| list | error_bounds_L1 = [] |
| list | hinsberg_as = [0.23477481312586, 0.28549576238194, 0.28479416718255, 0.26149775537574, 0.32056200511938, 0.35354490689146, 0.39635904496921, 0.42253908596514, 0.48317384225265, 0.63661146557001] |
| list | hinsberg_ts = [0.1, 0.3, 1., 3., 10., 40., 190., 1000., 6500., 50000.] |
| list | numbers = [] |
| list | errors = [] |
| exact_integral = float(ExactIntegrationOfSinus(t, t0, t_tail)) | |
| list | ais = best_as[i] |
| list | tis = best_ts[i] |
| m = len(ais) | |
| approximate_inegral = float(IntegrationWithSumOfExponentialsKernel(t, t0, t_tail, ais, tis)) | |
| list | numbers_L1 = [] |
| list | errors_L1 = [] |
| list | window_kernel_errors = [exact_integral for a in best_as_L1] |
| approximate_inegral_hinsberg = float(IntegrationWithSumOfExponentialsKernel(t, t0, t_tail, hinsberg_as, hinsberg_ts)) | |
| error_hinsberg = abs(exact_integral - approximate_inegral_hinsberg) * math.sqrt(t_win) | |
| label | |
| def kernel_approximation_error.ExactIntegrationOfSinus | ( | t, | |
a = None, |
|||
b = None |
|||
| ) |
| def kernel_approximation_error.ExactIntegrationOfSinusWithExponentialKernel | ( | ti, | |
| t, | |||
| a, | |||
| b | |||
| ) |
| def kernel_approximation_error.IntegrationWithSumOfExponentialsKernel | ( | t, | |
| a, | |||
| b, | |||
| ais, | |||
| tis | |||
| ) |
| list kernel_approximation_error.ais = best_as[i] |
| kernel_approximation_error.approximate_inegral = float(IntegrationWithSumOfExponentialsKernel(t, t0, t_tail, ais, tis)) |
| kernel_approximation_error.approximate_inegral_hinsberg = float(IntegrationWithSumOfExponentialsKernel(t, t0, t_tail, hinsberg_as, hinsberg_ts)) |
| list kernel_approximation_error.best_as = [] |
| list kernel_approximation_error.best_as_L1 = [] |
| list kernel_approximation_error.best_ts = [] |
| list kernel_approximation_error.best_ts_L1 = [] |
| kernel_approximation_error.error_bounds = [] |
| kernel_approximation_error.error_bounds_L1 = [] |
| kernel_approximation_error.error_hinsberg = abs(exact_integral - approximate_inegral_hinsberg) * math.sqrt(t_win) |
| kernel_approximation_error.errors = [] |
| kernel_approximation_error.errors_L1 = [] |
| kernel_approximation_error.exact_integral = float(ExactIntegrationOfSinus(t, t0, t_tail)) |
| list kernel_approximation_error.hinsberg_as = [0.23477481312586, 0.28549576238194, 0.28479416718255, 0.26149775537574, 0.32056200511938, 0.35354490689146, 0.39635904496921, 0.42253908596514, 0.48317384225265, 0.63661146557001] |
| list kernel_approximation_error.hinsberg_ts = [0.1, 0.3, 1., 3., 10., 40., 190., 1000., 6500., 50000.] |
| kernel_approximation_error.label |
| kernel_approximation_error.m = len(ais) |
| kernel_approximation_error.numbers = [] |
| kernel_approximation_error.numbers_L1 = [] |
| float kernel_approximation_error.t = 5.0 |
| string kernel_approximation_error.t0 = "MinusInfinity" |
| float kernel_approximation_error.t_win = 3.0 |
| list kernel_approximation_error.tis = best_ts[i] |
| kernel_approximation_error.window_kernel_errors = [exact_integral for a in best_as_L1] |