#include <skyline_lu_factorization_solver.h>
◆ DenseMatrixType
template<class TSparseSpaceType , class TDenseSpaceType >
◆ IndexType
template<class TSparseSpaceType , class TDenseSpaceType >
◆ SparseMatrixType
template<class TSparseSpaceType , class TDenseSpaceType >
◆ VectorType
template<class TSparseSpaceType , class TDenseSpaceType >
◆ LUSkylineFactorization()
template<class TSparseSpaceType , class TDenseSpaceType >
◆ ~LUSkylineFactorization()
template<class TSparseSpaceType , class TDenseSpaceType >
◆ backForwardSolve()
template<class TSparseSpaceType , class TDenseSpaceType >
◆ clear()
template<class TSparseSpaceType , class TDenseSpaceType >
◆ copyFromCSRMatrix()
template<class TSparseSpaceType , class TDenseSpaceType >
◆ factorize()
template<class TSparseSpaceType , class TDenseSpaceType >
Perform and in-place LU factorization of a skyline matrix by Crout's algorithm. The diagonal of U contains the 1's. The equivalent MATLAB code for a full matrix would be: for k=1:n-1 A(1,k+1)=A(1,k+1)/A(1,1); for i=2:k sum=A(i,k+1); for j=1:i-1; sum=sum-A(i,j)*A(j,k+1); end; A(i,k+1)=sum/A(i,i); end for i=2:k sum=A(k+1,i); for j=1:i-1; sum=sum-A(j,i)*A(k+1,j); end; A(k+1,i)=sum; end sum=A(k+1,k+1); for i=1:k; sum=sum-A(k+1,i)*A(i,k+1); end; A(k+1,k+1)=sum; end
◆ entriesD
template<class TSparseSpaceType , class TDenseSpaceType >
◆ entriesL
template<class TSparseSpaceType , class TDenseSpaceType >
◆ entriesU
template<class TSparseSpaceType , class TDenseSpaceType >
◆ perm
template<class TSparseSpaceType , class TDenseSpaceType >
◆ rowIndex
template<class TSparseSpaceType , class TDenseSpaceType >
◆ size
template<class TSparseSpaceType , class TDenseSpaceType >
The documentation for this class was generated from the following file: