KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
Variables | |
domain_size = fluid_ulf_var.domain_size | |
setting the domain size for the problem to be solved More... | |
fluid_model_part = ModelPart("FluidPart"); | |
structure_model_part = ModelPart("StructurePart"); | |
combined_model_part = ModelPart("CombinedPart"); | |
SolverType = fluid_ulf_var.SolverType | |
fluid_only_model_part = ModelPart("FluidOnlyPart"); | |
input_file_name = fluid_ulf_var.problem_name | |
gid_mode = GiDPostMode.GiD_PostBinary | |
multifile = MultiFileFlag.MultipleFiles | |
deformed_mesh_flag = WriteDeformedMeshFlag.WriteDeformed | |
write_conditions = WriteConditionsFlag.WriteConditions | |
gid_io = GidIO(input_file_name,gid_mode,multifile,deformed_mesh_flag, write_conditions) | |
model_part_io_origin = ModelPartIO(input_file_name) | |
compute_reactions = fluid_ulf_var.compute_reactions | |
box_corner1 = Vector(3); | |
adding dofs More... | |
box_corner2 = Vector(3); | |
string | outstring2 = "convergence_info.txt" |
outputfile1 = open(outstring2, 'w') | |
add_nodes = fluid_ulf_var.adaptive_refinement | |
bulk_modulus = fluid_ulf_var.bulk_modulus | |
density = fluid_ulf_var.density | |
viscosity = fluid_ulf_var.viscosity | |
body_force = Vector(3) | |
FSI = fluid_ulf_var.FSI | |
float | is_fsi_interf = 0.0 |
check to ensure that no node has zero density or pressure More... | |
solver = ulf_frac.ULF_FSISolver(outputfile1, fluid_only_model_part, fluid_model_part, structure_model_part, combined_model_part, FSI, compute_reactions, box_corner1, box_corner2, domain_size, add_nodes, bulk_modulus, density) | |
alpha_shape | |
echo_level | |
prop = fluid_model_part.Properties[1] | |
mat = LinearElasticPlaneStrain2DLaw() | |
Dt = fluid_ulf_var.Dt | |
full_Dt = Dt | |
float | initial_Dt = 0.001 * full_Dt |
final_time = fluid_ulf_var.max_time | |
output_step = fluid_ulf_var.output_step | |
float | safety_factor = 0.5 |
next_output_time = output_step | |
float | time = 0.0 |
int | step = 0 |
inlet_vel = Vector(3) | |
dummy = LagrangianInletProcess(fluid_model_part, 0.0, inlet_vel) | |
float | new_Dt = 0.00000001; |
ProcessInfo | |
file_name = input_file_name | |
script_ELASTIC.add_nodes = fluid_ulf_var.adaptive_refinement |
script_ELASTIC.alpha_shape |
script_ELASTIC.body_force = Vector(3) |
script_ELASTIC.box_corner1 = Vector(3); |
adding dofs
script_ELASTIC.box_corner2 = Vector(3); |
script_ELASTIC.bulk_modulus = fluid_ulf_var.bulk_modulus |
script_ELASTIC.combined_model_part = ModelPart("CombinedPart"); |
script_ELASTIC.compute_reactions = fluid_ulf_var.compute_reactions |
script_ELASTIC.deformed_mesh_flag = WriteDeformedMeshFlag.WriteDeformed |
script_ELASTIC.density = fluid_ulf_var.density |
script_ELASTIC.domain_size = fluid_ulf_var.domain_size |
setting the domain size for the problem to be solved
script_ELASTIC.Dt = fluid_ulf_var.Dt |
script_ELASTIC.dummy = LagrangianInletProcess(fluid_model_part, 0.0, inlet_vel) |
script_ELASTIC.echo_level |
script_ELASTIC.file_name = input_file_name |
script_ELASTIC.final_time = fluid_ulf_var.max_time |
script_ELASTIC.fluid_model_part = ModelPart("FluidPart"); |
script_ELASTIC.fluid_only_model_part = ModelPart("FluidOnlyPart"); |
script_ELASTIC.FSI = fluid_ulf_var.FSI |
script_ELASTIC.full_Dt = Dt |
script_ELASTIC.gid_io = GidIO(input_file_name,gid_mode,multifile,deformed_mesh_flag, write_conditions) |
script_ELASTIC.gid_mode = GiDPostMode.GiD_PostBinary |
float script_ELASTIC.initial_Dt = 0.001 * full_Dt |
script_ELASTIC.inlet_vel = Vector(3) |
script_ELASTIC.input_file_name = fluid_ulf_var.problem_name |
float script_ELASTIC.is_fsi_interf = 0.0 |
check to ensure that no node has zero density or pressure
script_ELASTIC.mat = LinearElasticPlaneStrain2DLaw() |
script_ELASTIC.model_part_io_origin = ModelPartIO(input_file_name) |
script_ELASTIC.multifile = MultiFileFlag.MultipleFiles |
script_ELASTIC.new_Dt = 0.00000001; |
script_ELASTIC.next_output_time = output_step |
script_ELASTIC.output_step = fluid_ulf_var.output_step |
script_ELASTIC.outputfile1 = open(outstring2, 'w') |
string script_ELASTIC.outstring2 = "convergence_info.txt" |
script_ELASTIC.ProcessInfo |
script_ELASTIC.prop = fluid_model_part.Properties[1] |
float script_ELASTIC.safety_factor = 0.5 |
script_ELASTIC.solver = ulf_frac.ULF_FSISolver(outputfile1, fluid_only_model_part, fluid_model_part, structure_model_part, combined_model_part, FSI, compute_reactions, box_corner1, box_corner2, domain_size, add_nodes, bulk_modulus, density) |
script_ELASTIC.SolverType = fluid_ulf_var.SolverType |
int script_ELASTIC.step = 0 |
script_ELASTIC.structure_model_part = ModelPart("StructurePart"); |
float script_ELASTIC.time = 0.0 |
script_ELASTIC.viscosity = fluid_ulf_var.viscosity |
script_ELASTIC.write_conditions = WriteConditionsFlag.WriteConditions |