103 #include "custom_constitutive/elastic_isotropic_3d.h"
105 #include "custom_constitutive/linear_plane_strain.h"
106 #include "custom_constitutive/linear_plane_stress.h"
167 void Register()
override;
182 std::string
Info()
const override
184 return "KratosStructuralMechanicsApplication";
198 rOStream <<
"Variables:" << std::endl;
200 rOStream << std::endl;
201 rOStream <<
"Elements:" << std::endl;
203 rOStream << std::endl;
204 rOStream <<
"Conditions:" << std::endl;
PeriodicInterfaceProcess & operator=(const PeriodicInterfaceProcess &)=delete
std::string Info() const override
Turn back information as a string.
Definition: periodic_interface_process.hpp:93
Definition: adjoint_finite_difference_cr_beam_element_3D2N.h:23
AdjointFiniteDifferenceSpringDamperElement.
Definition: adjoint_finite_difference_spring_damper_element_3D2N.h:27
AdjointFiniteDifferencingBaseElement.
Definition: adjoint_finite_difference_truss_element_3D2N.h:29
AdjointFiniteDifferencingBaseElement.
Definition: adjoint_finite_difference_truss_element_linear_3D2N.h:29
AdjointFiniteDifferencingShellElement.
Definition: adjoint_finite_difference_shell_element.h:52
AdjointFiniteDifferencingSmallDisplacementElement.
Definition: adjoint_finite_difference_small_displacement_element.h:29
AdjointSemiAnalyticBaseCondition.
Definition: adjoint_semi_analytic_base_condition.h:54
Definition: adjoint_semi_analytic_point_load_condition.h:48
A template class for creating adjoint elements for solids.
Definition: adjoint_solid_element.h:37
Definition: axisym_elastic_isotropic.h:43
Axisymmetric line load condition.
Definition: axisym_line_load_condition_2d.h:48
Axisymmetric point load condition.
Definition: axisym_point_load_condition.h:48
Axisymmetric Kinematic Linear element.
Definition: axisym_small_displacement.h:48
Axisymmetric Total Lagrangian element.
Definition: axisym_total_lagrangian.h:48
Axisymmetric Updated Lagrangian element.
Definition: axisym_updated_lagrangian.h:48
Definition: beam_constitutive_law.h:26
This is a 3D-2node cable element with 3 translational dofs per node inheriting from the TrussElement3...
Definition: cable_element_3D2N.hpp:33
This is a 2D-2node beam element with 2 translational dofs and 1 rotational dof per node.
Definition: cr_beam_element_2D2N.hpp:35
This is a 3D-2node beam element with 3 translational dofs and 3 rotational dof per node.
Definition: cr_beam_element_3D2N.hpp:35
This is a linear 2D-2node beam element with 2 translational dofs and 1 rotational dof per node inheri...
Definition: cr_beam_element_linear_2D2N.hpp:36
This is a linear 3D-2node beam element with 3 translational dofs and 3 rotational dof per node inheri...
Definition: cr_beam_element_linear_3D2N.hpp:34
This class is to add contributions to LHS and RHS of the displacement control condition.
Definition: displacement_control_condition.h:52
Definition: elastic_isotropic_3d.h:53
Short class definition.
Definition: isotropic_shell_element.hpp:49
This class defines the interface with kernel for all applications in Kratos.
Definition: kratos_application.h:91
Definition: kratos_components.h:253
virtual void PrintData(std::ostream &rOStream) const
Print object's data.
Definition: kratos_components.h:403
static ComponentsContainerType & GetComponents()
Retrieves the ComponentsContainer.
Definition: kratos_components.h:138
This application features Elements, Conditions, Constitutive laws and Utilities for structural analys...
Definition: structural_mechanics_application.h:139
void PrintInfo(std::ostream &rOStream) const override
Print information about this object.
Definition: structural_mechanics_application.h:188
void PrintData(std::ostream &rOStream) const override
Print object's data.
Definition: structural_mechanics_application.h:195
~KratosStructuralMechanicsApplication() override
Destructor.
Definition: structural_mechanics_application.h:156
KRATOS_CLASS_POINTER_DEFINITION(KratosStructuralMechanicsApplication)
Pointer definition of KratosStructuralMechanicsApplication.
std::string Info() const override
Turn back information as a string.
Definition: structural_mechanics_application.h:182
This class defines a small deformation linear elastic constitutive model for 3D cases.
Definition: linear_plane_strain.h:52
This class defines a small deformation linear elastic constitutive model for plane stress cases.
Definition: linear_plane_stress.h:50
Definition: mass_element.h:27
Definition: membrane_element.hpp:26
Concentrated nodal for 3D and 2D points.
Definition: nodal_concentrated_element.hpp:44
Point Load Condition for 3D and 2D geometries. (base class)
Definition: point_load_condition.hpp:42
Definition: point_moment_condition_3d.h:45
Infinitesimal strain definition with mixed B-bar formulation.
Definition: small_displacement_bbar.h:57
Small displacement element for 2D and 3D geometries.
Definition: small_displacement.h:54
Small displacement with strain based mixed formulation element.
Definition: small_displacement_mixed_volumetric_strain_element.h:65
This class is the responsible to add the contributions of the RHS and LHS of the surface loads of the...
Definition: small_displacement_surface_load_condition_3d.h:52
This is a triangular prism solid element for the analysis of thin/thick shells undergoing large elast...
Definition: solid_shell_element_sprism_3D6N.h:58
This class is the responsible to add the contributions of the RHS and LHS of the surface loads of the...
Definition: surface_load_condition_3d.h:53
Total Lagrangian element for 2D and 3D geometries.
Definition: total_lagrangian.h:53
Total Lagrangian mixed u-p element (Q1P0) for 2D and 3D geometries.
Definition: total_lagrangian_q1p0_mixed_element.h:56
This is a 3D-2node truss element with 3 translational dofs per node.
Definition: truss_element_3D2N.hpp:34
This is a linear 3D-2node truss element with 3 translational dofs per node inheriting from TrussEleme...
Definition: truss_element_linear_3D2N.hpp:33
Updated Lagrangian element for 2D and 3D geometries.
Definition: updated_lagrangian.h:53
Small displacement element for 2.5D cases.
Definition: z_strain_driven_2p5_small_displacement.h:54
#define KRATOS_INFO(label)
Definition: logger.h:250
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
KRATOS_API_EXTERN template class KratosComponents< Condition >
Definition: condition.h:1191
KRATOS_API_EXTERN template class KratosComponents< Element >
Definition: element.h:1240
This constitutive law represents a linear elastic 1D law.