KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
Namespaces | Functions | Variables
rotatingcone_PureConvectionBenchmarking.py File Reference

Namespaces

 rotatingcone_PureConvectionBenchmarking
 

Functions

def rotatingcone_PureConvectionBenchmarking.BenchmarkCheck (time, model_part)
 

Variables

int rotatingcone_PureConvectionBenchmarking.domain_size = 2
 
string rotatingcone_PureConvectionBenchmarking.kratos_libs_path = '../../../../libs'
 
string rotatingcone_PureConvectionBenchmarking.kratos_applications_path = '../../../../applications/'
 
string rotatingcone_PureConvectionBenchmarking.kratos_benchmarking_path = '../../../../benchmarking'
 
 rotatingcone_PureConvectionBenchmarking.model_part = ModelPart("FluidPart")
 
 rotatingcone_PureConvectionBenchmarking.thermal_settings = ConvectionDiffusionSettings()
 
string rotatingcone_PureConvectionBenchmarking.input_file_name = "square"
 
 rotatingcone_PureConvectionBenchmarking.gid_mode = GiDPostMode.GiD_PostBinary
 
 rotatingcone_PureConvectionBenchmarking.multifile = MultiFileFlag.MultipleFiles
 
 rotatingcone_PureConvectionBenchmarking.deformed_mesh_flag = WriteDeformedMeshFlag.WriteUndeformed
 
 rotatingcone_PureConvectionBenchmarking.write_conditions = WriteConditionsFlag.WriteElementsOnly
 
 rotatingcone_PureConvectionBenchmarking.gid_io = GidIO(input_file_name, gid_mode, multifile, deformed_mesh_flag, write_conditions)
 
 rotatingcone_PureConvectionBenchmarking.model_part_io_fluid = ModelPartIO(input_file_name)
 
float rotatingcone_PureConvectionBenchmarking.mesh_name = 0.0
 
 rotatingcone_PureConvectionBenchmarking.vel = Vector(3);
 
float rotatingcone_PureConvectionBenchmarking.xc = 1.00 / 6.00
 
float rotatingcone_PureConvectionBenchmarking.yc = 1.00 / 6.00
 
float rotatingcone_PureConvectionBenchmarking.sigma = 0.2
 
tuple rotatingcone_PureConvectionBenchmarking.X1 = (node.X - xc) / sigma
 
tuple rotatingcone_PureConvectionBenchmarking.X2 = (node.Y - yc) / sigma
 
float rotatingcone_PureConvectionBenchmarking.temp = 0.25 * (1.00 + math.cos(math.pi * X1)) * (1.00+math.cos(math.pi*X2))
 
int rotatingcone_PureConvectionBenchmarking.output_step = 20
 
float rotatingcone_PureConvectionBenchmarking.delta_t = 2.00 * math.pi / 200.0;
 
int rotatingcone_PureConvectionBenchmarking.out = 0
 
int rotatingcone_PureConvectionBenchmarking.time_old_print = 0
 
float rotatingcone_PureConvectionBenchmarking.time = 0.0
 
float rotatingcone_PureConvectionBenchmarking.max_time = 7.0
 
int rotatingcone_PureConvectionBenchmarking.step = 0
 
int rotatingcone_PureConvectionBenchmarking.convection_order = 2
 
 rotatingcone_PureConvectionBenchmarking.pConvPrecond = DiagonalPreconditioner()
 
 rotatingcone_PureConvectionBenchmarking.convection_linear_solver = BICGSTABSolver(1e-9, 5000, pConvPrecond)
 
 rotatingcone_PureConvectionBenchmarking.convection_solver = pure_convection_solver.PureConvectionSolver(model_part, domain_size, thermal_settings)
 
 rotatingcone_PureConvectionBenchmarking.neighbour_finder = FindNodalNeighboursProcess(model_part);
 
 rotatingcone_PureConvectionBenchmarking.scalar_var_convected
 
float rotatingcone_PureConvectionBenchmarking.time_to_print = time - time_old_print