KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
Explicit total variation diminishing 3rd order Runge-Kutta. More...
#include <butcher_tableau.h>
Public Types | |
typedef ButcherTableau< ButcherTableauRK3TVD, 3, 3 > | BaseType |
Public Types inherited from Kratos::ButcherTableau< ButcherTableauRK3TVD, 3, 3 > | |
using | VectorType = std::vector< double > |
using | RowType = std::vector< double > |
using | MatrixType = std::vector< RowType > |
Public Member Functions | |
std::string | Info () const override |
Public Member Functions inherited from Kratos::ButcherTableau< ButcherTableauRK3TVD, 3, 3 > | |
virtual | ~ButcherTableau ()=default |
Destructor. More... | |
std::tuple< RowType::const_iterator, RowType::const_iterator > | GetMatrixRow (const unsigned int SubStepIndex) const |
RowType::const_iterator | GetMatrixRowBegin (const unsigned int SubStepIndex) const |
RowType::const_iterator | GetMatrixRowEnd (const unsigned int SubStepIndex) const |
constexpr const VectorType & | GetWeights () const |
constexpr double | GetIntegrationTheta (const unsigned int SubStepIndex) const |
Static Public Member Functions | |
static const BaseType::MatrixType | GenerateRKMatrix () |
static const BaseType::VectorType | GenerateWeights () |
static const BaseType::VectorType | GenerateThetasVector () |
static std::string | Name () |
Static Public Member Functions inherited from Kratos::ButcherTableau< ButcherTableauRK3TVD, 3, 3 > | |
static constexpr unsigned int | Order () |
static constexpr unsigned int | SubstepCount () |
static std::string | Name () |
Additional Inherited Members | |
Protected Attributes inherited from Kratos::ButcherTableau< ButcherTableauRK3TVD, 3, 3 > | |
const MatrixType | mA |
const VectorType | mB |
const VectorType | mC |
Explicit total variation diminishing 3rd order Runge-Kutta.
Implementation of Proposition 3.2 of: Gottlieb, Sigal, and Chi-Wang Shu. "Total variation diminishing Runge-Kutta schemes." Mathematics of computation 67.221 (1998): 73-85.
|
inlinestatic |
|
inlinestatic |
|
inlinestatic |
|
inlineoverridevirtual |
|
inlinestatic |