KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
Classes | Namespaces | Functions | Variables
hinsberg_optimization_4.py File Reference

Classes

class  hinsberg_optimization_4.K_B
 
class  hinsberg_optimization_4.K_component
 
class  hinsberg_optimization_4.K_sum
 
class  hinsberg_optimization_4.Functional
 

Namespaces

 hinsberg_optimization_4
 

Functions

def hinsberg_optimization_4.DawsonIntegral (x)
 
def hinsberg_optimization_4.FindZero (f, x0)
 
def hinsberg_optimization_4.ApproximateQuadrature (times, f)
 
def hinsberg_optimization_4.SubstituteRichardsons (approx_successive_values, k, order, level=- 1)
 
def hinsberg_optimization_4.FillUpMatrices (F, ais, tis)
 
def hinsberg_optimization_4.GetExponentialsCoefficients (functional, a0, t0)
 
def hinsberg_optimization_4.TimesToTaus (times)
 
def hinsberg_optimization_4.TausToTimes (taus)
 

Variables

list hinsberg_optimization_4.tis = [0.1, 0.3, 1., 3., 5.,10., 40., 190., 1000., 6500., 50000.]
 
list hinsberg_optimization_4.a0 = [0.4 for t in tis]
 
int hinsberg_optimization_4.m = 5
 
int hinsberg_optimization_4.tol = 1e-9
 
int hinsberg_optimization_4.tol_residual = 1e-6
 
int hinsberg_optimization_4.max_iter = 30
 
bool hinsberg_optimization_4.still_changing = True
 
 hinsberg_optimization_4.a = np.array(a0 + tis)
 
 hinsberg_optimization_4.a_old = np.array(a0 + tis)
 
 hinsberg_optimization_4.a_best = np.array(a0 + tis)
 
int hinsberg_optimization_4.iteration = 0
 
 hinsberg_optimization_4.F = Functional()
 
 hinsberg_optimization_4.mod_residual = F.Fmod()
 
 hinsberg_optimization_4.best_residual = F.F()
 
 hinsberg_optimization_4.old_residual = best_residual
 
float hinsberg_optimization_4.gamma_0 = 0.5
 
 hinsberg_optimization_4.grad
 
 hinsberg_optimization_4.H_inv
 
 hinsberg_optimization_4.p = H_inv.dot(grad)
 
 hinsberg_optimization_4.residual = F.F()
 
 hinsberg_optimization_4.gradient_norm = sum([abs(float(g)) for g in grad])