KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
|
Functions | |
def | convert_chain_int_int (list_slip_stick) |
def | real_norm (input) |
Variables | |
bool | do_simplifications = False |
string | mode = "c" |
bool | impose_partion_of_unity = False |
bool | debug = False |
int | debug_counter = 0 |
list | dim_combinations = [2,3,3,3,3] |
list | nnodes_combinations = [2,3,4,3,4] |
list | nnodes_master_combinations = [2,3,4,4,3] |
int | normal_combs = 2 |
string | lhs_template_begin_string = "\n/***********************************************************************************/\n/***********************************************************************************/\n\ntemplate<>\nvoid AugmentedLagrangianMethodFrictionalMortarContactCondition<TDim,TNumNodes, TNormalVariation, TNumNodesMaster>::CalculateLocalLHS(\n Matrix& rLocalLHS,\n const MortarConditionMatrices& rMortarConditionMatrices,\n const DerivativeDataType& rDerivativeData,\n const IndexType rActiveInactive,\n const ProcessInfo& rCurrentProcessInfo\n )\n{\n // Initialize\n for (std::size_t i = 0; i < MatrixSize; ++i)\n for (std::size_t j = 0; j < MatrixSize; ++j)\n rLocalLHS(i, j) = 0.0;\n\n // The geometry of the condition\n const GeometryType& r_geometry = this->GetParentGeometry();\n\n // Initialize values\n const BoundedMatrix<double, TNumNodes, TDim>& u1 = rDerivativeData.u1;\n const BoundedMatrix<double, TNumNodes, TDim>& u1old = rDerivativeData.u1old;\n const BoundedMatrix<double, TNumNodesMaster, TDim>& u2 = rDerivativeData.u2;\n const BoundedMatrix<double, TNumNodesMaster, TDim>& u2old = rDerivativeData.u2old;\n const BoundedMatrix<double, TNumNodes, TDim>& X1 = rDerivativeData.X1;\n const BoundedMatrix<double, TNumNodesMaster, TDim>& X2 = rDerivativeData.X2;\n \n const BoundedMatrix<double, TNumNodes, TDim> LM = MortarUtilities::GetVariableMatrix<TDim,TNumNodes>(r_geometry, VECTOR_LAGRANGE_MULTIPLIER, 0);\n \n // The normal and tangent vectors\n const BoundedMatrix<double, TNumNodes, TDim>& NormalSlave = rDerivativeData.NormalSlave;\n const BoundedMatrix<double, TNumNodes, TDim> TangentSlave = MortarUtilities::ComputeTangentMatrix<TNumNodes,TDim>(r_geometry);\n\n // The ALM parameters\n const array_1d<double, TNumNodes> DynamicFactor = MortarUtilities::GetVariableVector<TNumNodes>(r_geometry, DYNAMIC_FACTOR);\n const double ScaleFactor = rDerivativeData.ScaleFactor;\n const array_1d<double, TNumNodes>& PenaltyParameter = rDerivativeData.PenaltyParameter;\n const double TangentFactor = rDerivativeData.TangentFactor;\n \n // Mortar operators\n const BoundedMatrix<double, TNumNodes, TNumNodesMaster>& MOperator = rMortarConditionMatrices.MOperator;\n const BoundedMatrix<double, TNumNodes, TNumNodes>& DOperator = rMortarConditionMatrices.DOperator;\n const BoundedMatrix<double, TNumNodes, TNumNodes>& MOperatorold = mPreviousMortarOperators.MOperator;\n const BoundedMatrix<double, TNumNodes, TNumNodes>& DOperatorold = mPreviousMortarOperators.DOperator;\n\n // Mortar operators derivatives\n const array_1d<BoundedMatrix<double, TNumNodes, TNumNodes>, SIZEDERIVATIVES2>& DeltaMOperator = rMortarConditionMatrices.DeltaMOperator;\n const array_1d<BoundedMatrix<double, TNumNodes, TNumNodes>, SIZEDERIVATIVES2>& DeltaDOperator = rMortarConditionMatrices.DeltaDOperator;\n\n // We get the friction coefficient\n const array_1d<double, TNumNodes> mu = GetFrictionCoefficient();\n\n// // The delta time\n// const double delta_time = rCurrentProcessInfo[DELTA_TIME];\n\n const double OperatorThreshold = rCurrentProcessInfo[OPERATOR_THRESHOLD];\n const double norm_delta_M = norm_frobenius(MOperator - MOperatorold);\n const double norm_delta_D = norm_frobenius(DOperator - DOperatorold);\n const bool is_objetive = (norm_delta_D > OperatorThreshold && norm_delta_M > OperatorThreshold) ? true : false;\n this->Set(MODIFIED, !is_objetive);\n" |
string | lhs_template_end_string = "}\n" |
string | rhs_template_begin_string = "\n/***********************************************************************************/\n/***********************************************************************************/\n\ntemplate<>\nvoid AugmentedLagrangianMethodFrictionalMortarContactCondition<TDim,TNumNodes, TNormalVariation, TNumNodesMaster>::CalculateLocalRHS(\n Vector& rLocalRHS,\n const MortarConditionMatrices& rMortarConditionMatrices,\n const DerivativeDataType& rDerivativeData,\n const IndexType rActiveInactive,\n const ProcessInfo& rCurrentProcessInfo\n )\n{\n // Initialize\n for (std::size_t i = 0; i < MatrixSize; ++i)\n rLocalRHS[i] = 0.0;\n\n // The geometry of the condition\n const GeometryType& r_geometry = this->GetParentGeometry();\n\n // Initialize values\n const BoundedMatrix<double, TNumNodes, TDim>& u1 = rDerivativeData.u1;\n const BoundedMatrix<double, TNumNodes, TDim>& u1old = rDerivativeData.u1old;\n const BoundedMatrix<double, TNumNodesMaster, TDim>& u2 = rDerivativeData.u2;\n const BoundedMatrix<double, TNumNodesMaster, TDim>& u2old = rDerivativeData.u2old;\n const BoundedMatrix<double, TNumNodes, TDim>& X1 = rDerivativeData.X1;\n const BoundedMatrix<double, TNumNodesMaster, TDim>& X2 = rDerivativeData.X2;\n \n const BoundedMatrix<double, TNumNodes, TDim> LM = MortarUtilities::GetVariableMatrix<TDim,TNumNodes>(r_geometry, VECTOR_LAGRANGE_MULTIPLIER, 0);\n \n // The normal and tangent vectors\n const BoundedMatrix<double, TNumNodes, TDim>& NormalSlave = rDerivativeData.NormalSlave;\n const BoundedMatrix<double, TNumNodes, TDim> TangentSlave = MortarUtilities::ComputeTangentMatrix<TNumNodes,TDim>(r_geometry);\n\n // The ALM parameters\n const array_1d<double, TNumNodes> DynamicFactor = MortarUtilities::GetVariableVector<TNumNodes>(r_geometry, DYNAMIC_FACTOR);\n const double ScaleFactor = rDerivativeData.ScaleFactor;\n const array_1d<double, TNumNodes>& PenaltyParameter = rDerivativeData.PenaltyParameter;\n const double TangentFactor = rDerivativeData.TangentFactor;\n \n // Mortar operators\n const BoundedMatrix<double, TNumNodes, TNumNodesMaster>& MOperator = rMortarConditionMatrices.MOperator;\n const BoundedMatrix<double, TNumNodes, TNumNodes>& DOperator = rMortarConditionMatrices.DOperator;\n const BoundedMatrix<double, TNumNodes, TNumNodes>& MOperatorold = mPreviousMortarOperators.MOperator;\n const BoundedMatrix<double, TNumNodes, TNumNodes>& DOperatorold = mPreviousMortarOperators.DOperator;\n\n // We get the friction coefficient\n const array_1d<double, TNumNodes> mu = GetFrictionCoefficient();\n\n// // The delta time\n// const double delta_time = rCurrentProcessInfo[DELTA_TIME];\n\n const double OperatorThreshold = rCurrentProcessInfo[OPERATOR_THRESHOLD];\n const double norm_delta_M = norm_frobenius(MOperator - MOperatorold);\n const double norm_delta_D = norm_frobenius(DOperator - DOperatorold);\n const bool is_objetive = (norm_delta_D > OperatorThreshold && norm_delta_M > OperatorThreshold) ? true : false;\n this->Set(MODIFIED, !is_objetive);\n" |
string | rhs_template_end_string = "}\n" |
int | output_count = 0 |
int | total_combs = normal_combs * len(nnodes_combinations) |
string | normalvarstring = "false" |
string | lhs_string = "" |
SUBSTITUTION ################################. More... | |
string | rhs_string = "" |
number_dof = dim * (2 * nnodes + nnodes_master) | |
u1 = custom_sympy_fe_utilities.DefineMatrix('u1', nnodes, dim, "Symbol") | |
u2 = custom_sympy_fe_utilities.DefineMatrix('u2', nnodes_master, dim, "Symbol") | |
u1old = custom_sympy_fe_utilities.DefineMatrix('u1old', nnodes, dim, "Symbol") | |
u2old = custom_sympy_fe_utilities.DefineMatrix('u2old', nnodes_master, dim, "Symbol") | |
LM = custom_sympy_fe_utilities.DefineMatrix('LM', nnodes, dim, "Symbol") | |
NormalSlave = custom_sympy_fe_utilities.DefineMatrix('NormalSlave', nnodes, dim) | |
TangentSlave = custom_sympy_fe_utilities.DefineMatrix('TangentSlave', nnodes, dim) | |
w1 = custom_sympy_fe_utilities.DefineMatrix('w1',nnodes,dim, "Symbol") | |
w2 = custom_sympy_fe_utilities.DefineMatrix('w2',nnodes_master,dim, "Symbol") | |
wLM = custom_sympy_fe_utilities.DefineMatrix('wLM',nnodes,dim, "Symbol") | |
LMNormal = custom_sympy_fe_utilities.DefineVector('LMNormal', nnodes) | |
wLMNormal = custom_sympy_fe_utilities.DefineVector('wLMNormal', nnodes) | |
LMTangent = custom_sympy_fe_utilities.DefineMatrix('LMTangent', nnodes, dim) | |
wLMTangent = custom_sympy_fe_utilities.DefineMatrix('wLMTangent', nnodes, dim) | |
NormalGap = custom_sympy_fe_utilities.DefineVector('NormalGap', nnodes) | |
NormalwGap = custom_sympy_fe_utilities.DefineVector('NormalwGap', nnodes) | |
TangentSlipNonObjective = custom_sympy_fe_utilities.DefineMatrix('TangentSlipNonObjective', nnodes, dim) | |
TangentwSlipNonObjective = custom_sympy_fe_utilities.DefineMatrix('TangentwSlipNonObjective', nnodes, dim) | |
TangentSlipObjective = custom_sympy_fe_utilities.DefineMatrix('TangentSlipObjective', nnodes, dim) | |
TangentwSlipObjective = custom_sympy_fe_utilities.DefineMatrix('TangentwSlipObjective', nnodes, dim) | |
DOperator = custom_sympy_fe_utilities.DefineMatrix('DOperator', nnodes, nnodes) | |
MOperator = custom_sympy_fe_utilities.DefineMatrix('MOperator', nnodes, nnodes_master) | |
DOperatorold = custom_sympy_fe_utilities.DefineMatrix('DOperatorold',nnodes,nnodes, "Symbol") | |
MOperatorold = custom_sympy_fe_utilities.DefineMatrix('MOperatorold',nnodes,nnodes_master, "Symbol") | |
X1 = custom_sympy_fe_utilities.DefineMatrix('X1',nnodes,dim) | |
X2 = custom_sympy_fe_utilities.DefineMatrix('X2',nnodes_master,dim) | |
x1 = X1 + u1 | |
x2 = X2 + u2 | |
x1old = X1 + u1old | |
x2old = X2 + u2old | |
mu = custom_sympy_fe_utilities.DefineVector('mu',nnodes, "Symbol") | |
DynamicFactor = custom_sympy_fe_utilities.DefineVector('DynamicFactor',nnodes, "Symbol") | |
PenaltyParameter = custom_sympy_fe_utilities.DefineVector('PenaltyParameter',nnodes, "Symbol") | |
delta_time = sympy.Symbol('delta_time', positive=True) | |
ScaleFactor = sympy.Symbol('ScaleFactor', positive=True) | |
TangentFactor = sympy.Symbol('TangentFactor', positive=True) | |
list | u1_var = [] |
list | u2_var = [] |
list | LM_var = [] |
list | u12_var = u1_var.copy() |
list | u1_LM_var = u1_var.copy() |
list | all_var = u12_var.copy() |
Dx1Mx2 = DOperator * x1 - MOperator * x2 | |
Explicit definition tangent for node in range(nnodes): aux = LMTangent.row(node)/real_norm(LMTangent.row(node)) for idim in range(dim): TangentSlave[node,idim] = aux[idim]. More... | |
Dw1Mw2 = DOperator * w1 - MOperator * w2 | |
DDeltax1MDeltax2 = DOperator * (x1 - x1old) - MOperator * (x2 - x2old) | |
tuple | DeltaDx1DeltaMx2 = (DOperator - DOperatorold) * x1 - (MOperator - MOperatorold) * x2 |
tuple | DeltaDw1DeltaMw2 = (DOperator - DOperatorold) * w1 - (MOperator - MOperatorold) * w2 |
gap_time_derivative_non_objective = - DDeltax1MDeltax2.row(node)/delta_time | |
gap_time_derivative_non_objective_w = Dw1Mw2.row(node)/delta_time | |
tuple | gap_time_derivative_objective = DeltaDx1DeltaMx2.row(node)/delta_time |
tuple | gap_time_derivative_objective_w = - DeltaDw1DeltaMw2.row(node)/delta_time |
auxTangentSlipNonObjective = delta_time * (gap_time_derivative_non_objective - gap_time_derivative_non_objective.dot(NormalSlave.row(node)) * NormalSlave.row(node)) | |
auxTangentwSlipNonObjective = delta_time * (gap_time_derivative_non_objective_w - gap_time_derivative_non_objective_w.dot(NormalSlave.row(node)) * NormalSlave.row(node)) | |
auxTangentSlipObjective = delta_time * (gap_time_derivative_objective - gap_time_derivative_objective.dot(NormalSlave.row(node)) * NormalSlave.row(node)) | |
auxTangentwSlipObjective = delta_time * (gap_time_derivative_objective_w - gap_time_derivative_objective_w.dot(NormalSlave.row(node)) * NormalSlave.row(node)) | |
dofs = sympy.Matrix( sympy.zeros(number_dof, 1) ) | |
Enforced auxTangentSlipNonObjective = delta_time * gap_time_derivative_non_objective.dot(TangentSlave.row(node)) * TangentSlave.row(node) auxTangentwSlipNonObjective = delta_time * gap_time_derivative_non_objective_w.dot(TangentSlave.row(node)) * TangentSlave.row(node) auxTangentSlipObjective = delta_time * gap_time_derivative_objective.dot(TangentSlave.row(node)) * TangentSlave.row(node) auxTangentwSlipObjective = delta_time * gap_time_derivative_objective_w.dot(TangentSlave.row(node)) * TangentSlave.row(node) More... | |
testfunc = sympy.Matrix( sympy.zeros(number_dof, 1) ) | |
int | count = 0 |
int | rv_galerkin = 0 |
FUNCTIONAL DEFINITION ############################. More... | |
tuple | augmented_normal_contact_pressure = (ScaleFactor * LMNormal[node] + PenaltyParameter[node] * NormalGap[node]) |
tuple | normal_augmented_contact_pressure = augmented_normal_contact_pressure * NormalSlave.row(node) |
tuple | augmented_lm = (ScaleFactor * LM.row(node) + PenaltyParameter[node] * NormalGap[node] * NormalSlave.row(node)) |
tuple | augmented_tangent_contact_pressure = - mu[node] * augmented_normal_contact_pressure * TangentSlave.row(node) |
tuple | modified_augmented_tangent_lm = ScaleFactor * LMTangent.row(node) - augmented_tangent_contact_pressure |
rv = sympy.Matrix(sympy.zeros(1, 1)) | |
Complete functional. More... | |
rhs | |
lhs | |
lhs_out = custom_sympy_fe_utilities.OutputMatrix_CollectingFactorsNonZero(lhs, "lhs", mode, 1, number_dof) | |
rhs_out = custom_sympy_fe_utilities.OutputVector_CollectingFactorsNonZero(rhs, "rhs", mode, 1, number_dof) | |
list | var_strings = [] |
DEFINE VARIABLES AND DERIVATIVES #######################. More... | |
list | var_strings_subs = [] |
list | var_strings_aux_subs = [] |
list | der_var_strings = [] |
list | der_var_list = [] |
list | der_var_used_index = [] |
first_input = open("ALM_frictional_mortar_contact_condition_template.cpp",'r').read() | |
FINAL SAVING ##############################. More... | |
outputstring = first_input.replace("// replace_lhs", lhs_string) | |
input = open("ALM_frictional_mortar_contact_condition.cpp",'r').read() | |
output = open("ALM_frictional_mortar_contact_condition.cpp",'w') | |
def generate_frictional_mortar_condition.convert_chain_int_int | ( | list_slip_stick | ) |
def generate_frictional_mortar_condition.real_norm | ( | input | ) |
list generate_frictional_mortar_condition.all_var = u12_var.copy() |
tuple generate_frictional_mortar_condition.augmented_lm = (ScaleFactor * LM.row(node) + PenaltyParameter[node] * NormalGap[node] * NormalSlave.row(node)) |
tuple generate_frictional_mortar_condition.augmented_normal_contact_pressure = (ScaleFactor * LMNormal[node] + PenaltyParameter[node] * NormalGap[node]) |
generate_frictional_mortar_condition.augmented_tangent_contact_pressure = - mu[node] * augmented_normal_contact_pressure * TangentSlave.row(node) |
generate_frictional_mortar_condition.auxTangentSlipNonObjective = delta_time * (gap_time_derivative_non_objective - gap_time_derivative_non_objective.dot(NormalSlave.row(node)) * NormalSlave.row(node)) |
generate_frictional_mortar_condition.auxTangentSlipObjective = delta_time * (gap_time_derivative_objective - gap_time_derivative_objective.dot(NormalSlave.row(node)) * NormalSlave.row(node)) |
generate_frictional_mortar_condition.auxTangentwSlipNonObjective = delta_time * (gap_time_derivative_non_objective_w - gap_time_derivative_non_objective_w.dot(NormalSlave.row(node)) * NormalSlave.row(node)) |
generate_frictional_mortar_condition.auxTangentwSlipObjective = delta_time * (gap_time_derivative_objective_w - gap_time_derivative_objective_w.dot(NormalSlave.row(node)) * NormalSlave.row(node)) |
int generate_frictional_mortar_condition.count = 0 |
generate_frictional_mortar_condition.DDeltax1MDeltax2 = DOperator * (x1 - x1old) - MOperator * (x2 - x2old) |
bool generate_frictional_mortar_condition.debug = False |
int generate_frictional_mortar_condition.debug_counter = 0 |
generate_frictional_mortar_condition.delta_time = sympy.Symbol('delta_time', positive=True) |
tuple generate_frictional_mortar_condition.DeltaDw1DeltaMw2 = (DOperator - DOperatorold) * w1 - (MOperator - MOperatorold) * w2 |
tuple generate_frictional_mortar_condition.DeltaDx1DeltaMx2 = (DOperator - DOperatorold) * x1 - (MOperator - MOperatorold) * x2 |
generate_frictional_mortar_condition.der_var_list = [] |
generate_frictional_mortar_condition.der_var_strings = [] |
list generate_frictional_mortar_condition.der_var_used_index = [] |
list generate_frictional_mortar_condition.dim_combinations = [2,3,3,3,3] |
bool generate_frictional_mortar_condition.do_simplifications = False |
generate_frictional_mortar_condition.dofs = sympy.Matrix( sympy.zeros(number_dof, 1) ) |
Enforced auxTangentSlipNonObjective = delta_time * gap_time_derivative_non_objective.dot(TangentSlave.row(node)) * TangentSlave.row(node) auxTangentwSlipNonObjective = delta_time * gap_time_derivative_non_objective_w.dot(TangentSlave.row(node)) * TangentSlave.row(node) auxTangentSlipObjective = delta_time * gap_time_derivative_objective.dot(TangentSlave.row(node)) * TangentSlave.row(node) auxTangentwSlipObjective = delta_time * gap_time_derivative_objective_w.dot(TangentSlave.row(node)) * TangentSlave.row(node)
generate_frictional_mortar_condition.DOperator = custom_sympy_fe_utilities.DefineMatrix('DOperator', nnodes, nnodes) |
generate_frictional_mortar_condition.DOperatorold = custom_sympy_fe_utilities.DefineMatrix('DOperatorold',nnodes,nnodes, "Symbol") |
Explicit definition tangent for node in range(nnodes): aux = LMTangent.row(node)/real_norm(LMTangent.row(node)) for idim in range(dim): TangentSlave[node,idim] = aux[idim].
generate_frictional_mortar_condition.DynamicFactor = custom_sympy_fe_utilities.DefineVector('DynamicFactor',nnodes, "Symbol") |
generate_frictional_mortar_condition.first_input = open("ALM_frictional_mortar_contact_condition_template.cpp",'r').read() |
FINAL SAVING ##############################.
generate_frictional_mortar_condition.gap_time_derivative_non_objective = - DDeltax1MDeltax2.row(node)/delta_time |
generate_frictional_mortar_condition.gap_time_derivative_non_objective_w = Dw1Mw2.row(node)/delta_time |
tuple generate_frictional_mortar_condition.gap_time_derivative_objective = DeltaDx1DeltaMx2.row(node)/delta_time |
tuple generate_frictional_mortar_condition.gap_time_derivative_objective_w = - DeltaDw1DeltaMw2.row(node)/delta_time |
bool generate_frictional_mortar_condition.impose_partion_of_unity = False |
generate_frictional_mortar_condition.input = open("ALM_frictional_mortar_contact_condition.cpp",'r').read() |
generate_frictional_mortar_condition.lhs |
generate_frictional_mortar_condition.lhs_out = custom_sympy_fe_utilities.OutputMatrix_CollectingFactorsNonZero(lhs, "lhs", mode, 1, number_dof) |
string generate_frictional_mortar_condition.lhs_string = "" |
SUBSTITUTION ################################.
SIMPLIFICATION ##############################.
string generate_frictional_mortar_condition.lhs_template_begin_string = "\n/***********************************************************************************/\n/***********************************************************************************/\n\ntemplate<>\nvoid AugmentedLagrangianMethodFrictionalMortarContactCondition<TDim,TNumNodes, TNormalVariation, TNumNodesMaster>::CalculateLocalLHS(\n Matrix& rLocalLHS,\n const MortarConditionMatrices& rMortarConditionMatrices,\n const DerivativeDataType& rDerivativeData,\n const IndexType rActiveInactive,\n const ProcessInfo& rCurrentProcessInfo\n )\n{\n // Initialize\n for (std::size_t i = 0; i < MatrixSize; ++i)\n for (std::size_t j = 0; j < MatrixSize; ++j)\n rLocalLHS(i, j) = 0.0;\n\n // The geometry of the condition\n const GeometryType& r_geometry = this->GetParentGeometry();\n\n // Initialize values\n const BoundedMatrix<double, TNumNodes, TDim>& u1 = rDerivativeData.u1;\n const BoundedMatrix<double, TNumNodes, TDim>& u1old = rDerivativeData.u1old;\n const BoundedMatrix<double, TNumNodesMaster, TDim>& u2 = rDerivativeData.u2;\n const BoundedMatrix<double, TNumNodesMaster, TDim>& u2old = rDerivativeData.u2old;\n const BoundedMatrix<double, TNumNodes, TDim>& X1 = rDerivativeData.X1;\n const BoundedMatrix<double, TNumNodesMaster, TDim>& X2 = rDerivativeData.X2;\n \n const BoundedMatrix<double, TNumNodes, TDim> LM = MortarUtilities::GetVariableMatrix<TDim,TNumNodes>(r_geometry, VECTOR_LAGRANGE_MULTIPLIER, 0);\n \n // The normal and tangent vectors\n const BoundedMatrix<double, TNumNodes, TDim>& NormalSlave = rDerivativeData.NormalSlave;\n const BoundedMatrix<double, TNumNodes, TDim> TangentSlave = MortarUtilities::ComputeTangentMatrix<TNumNodes,TDim>(r_geometry);\n\n // The ALM parameters\n const array_1d<double, TNumNodes> DynamicFactor = MortarUtilities::GetVariableVector<TNumNodes>(r_geometry, DYNAMIC_FACTOR);\n const double ScaleFactor = rDerivativeData.ScaleFactor;\n const array_1d<double, TNumNodes>& PenaltyParameter = rDerivativeData.PenaltyParameter;\n const double TangentFactor = rDerivativeData.TangentFactor;\n \n // Mortar operators\n const BoundedMatrix<double, TNumNodes, TNumNodesMaster>& MOperator = rMortarConditionMatrices.MOperator;\n const BoundedMatrix<double, TNumNodes, TNumNodes>& DOperator = rMortarConditionMatrices.DOperator;\n const BoundedMatrix<double, TNumNodes, TNumNodes>& MOperatorold = mPreviousMortarOperators.MOperator;\n const BoundedMatrix<double, TNumNodes, TNumNodes>& DOperatorold = mPreviousMortarOperators.DOperator;\n\n // Mortar operators derivatives\n const array_1d<BoundedMatrix<double, TNumNodes, TNumNodes>, SIZEDERIVATIVES2>& DeltaMOperator = rMortarConditionMatrices.DeltaMOperator;\n const array_1d<BoundedMatrix<double, TNumNodes, TNumNodes>, SIZEDERIVATIVES2>& DeltaDOperator = rMortarConditionMatrices.DeltaDOperator;\n\n // We get the friction coefficient\n const array_1d<double, TNumNodes> mu = GetFrictionCoefficient();\n\n// // The delta time\n// const double delta_time = rCurrentProcessInfo[DELTA_TIME];\n\n const double OperatorThreshold = rCurrentProcessInfo[OPERATOR_THRESHOLD];\n const double norm_delta_M = norm_frobenius(MOperator - MOperatorold);\n const double norm_delta_D = norm_frobenius(DOperator - DOperatorold);\n const bool is_objetive = (norm_delta_D > OperatorThreshold && norm_delta_M > OperatorThreshold) ? true : false;\n this->Set(MODIFIED, !is_objetive);\n" |
string generate_frictional_mortar_condition.lhs_template_end_string = "}\n" |
generate_frictional_mortar_condition.LM = custom_sympy_fe_utilities.DefineMatrix('LM', nnodes, dim, "Symbol") |
list generate_frictional_mortar_condition.LM_var = [] |
generate_frictional_mortar_condition.LMNormal = custom_sympy_fe_utilities.DefineVector('LMNormal', nnodes) |
generate_frictional_mortar_condition.LMTangent = custom_sympy_fe_utilities.DefineMatrix('LMTangent', nnodes, dim) |
string generate_frictional_mortar_condition.mode = "c" |
tuple generate_frictional_mortar_condition.modified_augmented_tangent_lm = ScaleFactor * LMTangent.row(node) - augmented_tangent_contact_pressure |
generate_frictional_mortar_condition.MOperator = custom_sympy_fe_utilities.DefineMatrix('MOperator', nnodes, nnodes_master) |
generate_frictional_mortar_condition.MOperatorold = custom_sympy_fe_utilities.DefineMatrix('MOperatorold',nnodes,nnodes_master, "Symbol") |
generate_frictional_mortar_condition.mu = custom_sympy_fe_utilities.DefineVector('mu',nnodes, "Symbol") |
list generate_frictional_mortar_condition.nnodes_combinations = [2,3,4,3,4] |
list generate_frictional_mortar_condition.nnodes_master_combinations = [2,3,4,4,3] |
tuple generate_frictional_mortar_condition.normal_augmented_contact_pressure = augmented_normal_contact_pressure * NormalSlave.row(node) |
int generate_frictional_mortar_condition.normal_combs = 2 |
generate_frictional_mortar_condition.NormalGap = custom_sympy_fe_utilities.DefineVector('NormalGap', nnodes) |
generate_frictional_mortar_condition.NormalSlave = custom_sympy_fe_utilities.DefineMatrix('NormalSlave', nnodes, dim) |
string generate_frictional_mortar_condition.normalvarstring = "false" |
generate_frictional_mortar_condition.NormalwGap = custom_sympy_fe_utilities.DefineVector('NormalwGap', nnodes) |
generate_frictional_mortar_condition.number_dof = dim * (2 * nnodes + nnodes_master) |
generate_frictional_mortar_condition.output = open("ALM_frictional_mortar_contact_condition.cpp",'w') |
int generate_frictional_mortar_condition.output_count = 0 |
generate_frictional_mortar_condition.outputstring = first_input.replace("// replace_lhs", lhs_string) |
generate_frictional_mortar_condition.PenaltyParameter = custom_sympy_fe_utilities.DefineVector('PenaltyParameter',nnodes, "Symbol") |
generate_frictional_mortar_condition.rhs |
generate_frictional_mortar_condition.rhs_out = custom_sympy_fe_utilities.OutputVector_CollectingFactorsNonZero(rhs, "rhs", mode, 1, number_dof) |
string generate_frictional_mortar_condition.rhs_string = "" |
string generate_frictional_mortar_condition.rhs_template_begin_string = "\n/***********************************************************************************/\n/***********************************************************************************/\n\ntemplate<>\nvoid AugmentedLagrangianMethodFrictionalMortarContactCondition<TDim,TNumNodes, TNormalVariation, TNumNodesMaster>::CalculateLocalRHS(\n Vector& rLocalRHS,\n const MortarConditionMatrices& rMortarConditionMatrices,\n const DerivativeDataType& rDerivativeData,\n const IndexType rActiveInactive,\n const ProcessInfo& rCurrentProcessInfo\n )\n{\n // Initialize\n for (std::size_t i = 0; i < MatrixSize; ++i)\n rLocalRHS[i] = 0.0;\n\n // The geometry of the condition\n const GeometryType& r_geometry = this->GetParentGeometry();\n\n // Initialize values\n const BoundedMatrix<double, TNumNodes, TDim>& u1 = rDerivativeData.u1;\n const BoundedMatrix<double, TNumNodes, TDim>& u1old = rDerivativeData.u1old;\n const BoundedMatrix<double, TNumNodesMaster, TDim>& u2 = rDerivativeData.u2;\n const BoundedMatrix<double, TNumNodesMaster, TDim>& u2old = rDerivativeData.u2old;\n const BoundedMatrix<double, TNumNodes, TDim>& X1 = rDerivativeData.X1;\n const BoundedMatrix<double, TNumNodesMaster, TDim>& X2 = rDerivativeData.X2;\n \n const BoundedMatrix<double, TNumNodes, TDim> LM = MortarUtilities::GetVariableMatrix<TDim,TNumNodes>(r_geometry, VECTOR_LAGRANGE_MULTIPLIER, 0);\n \n // The normal and tangent vectors\n const BoundedMatrix<double, TNumNodes, TDim>& NormalSlave = rDerivativeData.NormalSlave;\n const BoundedMatrix<double, TNumNodes, TDim> TangentSlave = MortarUtilities::ComputeTangentMatrix<TNumNodes,TDim>(r_geometry);\n\n // The ALM parameters\n const array_1d<double, TNumNodes> DynamicFactor = MortarUtilities::GetVariableVector<TNumNodes>(r_geometry, DYNAMIC_FACTOR);\n const double ScaleFactor = rDerivativeData.ScaleFactor;\n const array_1d<double, TNumNodes>& PenaltyParameter = rDerivativeData.PenaltyParameter;\n const double TangentFactor = rDerivativeData.TangentFactor;\n \n // Mortar operators\n const BoundedMatrix<double, TNumNodes, TNumNodesMaster>& MOperator = rMortarConditionMatrices.MOperator;\n const BoundedMatrix<double, TNumNodes, TNumNodes>& DOperator = rMortarConditionMatrices.DOperator;\n const BoundedMatrix<double, TNumNodes, TNumNodes>& MOperatorold = mPreviousMortarOperators.MOperator;\n const BoundedMatrix<double, TNumNodes, TNumNodes>& DOperatorold = mPreviousMortarOperators.DOperator;\n\n // We get the friction coefficient\n const array_1d<double, TNumNodes> mu = GetFrictionCoefficient();\n\n// // The delta time\n// const double delta_time = rCurrentProcessInfo[DELTA_TIME];\n\n const double OperatorThreshold = rCurrentProcessInfo[OPERATOR_THRESHOLD];\n const double norm_delta_M = norm_frobenius(MOperator - MOperatorold);\n const double norm_delta_D = norm_frobenius(DOperator - DOperatorold);\n const bool is_objetive = (norm_delta_D > OperatorThreshold && norm_delta_M > OperatorThreshold) ? true : false;\n this->Set(MODIFIED, !is_objetive);\n" |
string generate_frictional_mortar_condition.rhs_template_end_string = "}\n" |
generate_frictional_mortar_condition.rv = sympy.Matrix(sympy.zeros(1, 1)) |
Complete functional.
generate_frictional_mortar_condition.rv_galerkin = 0 |
FUNCTIONAL DEFINITION ############################.
generate_frictional_mortar_condition.ScaleFactor = sympy.Symbol('ScaleFactor', positive=True) |
generate_frictional_mortar_condition.TangentFactor = sympy.Symbol('TangentFactor', positive=True) |
generate_frictional_mortar_condition.TangentSlave = custom_sympy_fe_utilities.DefineMatrix('TangentSlave', nnodes, dim) |
generate_frictional_mortar_condition.TangentSlipNonObjective = custom_sympy_fe_utilities.DefineMatrix('TangentSlipNonObjective', nnodes, dim) |
generate_frictional_mortar_condition.TangentSlipObjective = custom_sympy_fe_utilities.DefineMatrix('TangentSlipObjective', nnodes, dim) |
generate_frictional_mortar_condition.TangentwSlipNonObjective = custom_sympy_fe_utilities.DefineMatrix('TangentwSlipNonObjective', nnodes, dim) |
generate_frictional_mortar_condition.TangentwSlipObjective = custom_sympy_fe_utilities.DefineMatrix('TangentwSlipObjective', nnodes, dim) |
generate_frictional_mortar_condition.testfunc = sympy.Matrix( sympy.zeros(number_dof, 1) ) |
int generate_frictional_mortar_condition.total_combs = normal_combs * len(nnodes_combinations) |
generate_frictional_mortar_condition.u1 = custom_sympy_fe_utilities.DefineMatrix('u1', nnodes, dim, "Symbol") |
list generate_frictional_mortar_condition.u12_var = u1_var.copy() |
list generate_frictional_mortar_condition.u1_LM_var = u1_var.copy() |
list generate_frictional_mortar_condition.u1_var = [] |
generate_frictional_mortar_condition.u1old = custom_sympy_fe_utilities.DefineMatrix('u1old', nnodes, dim, "Symbol") |
generate_frictional_mortar_condition.u2 = custom_sympy_fe_utilities.DefineMatrix('u2', nnodes_master, dim, "Symbol") |
list generate_frictional_mortar_condition.u2_var = [] |
generate_frictional_mortar_condition.u2old = custom_sympy_fe_utilities.DefineMatrix('u2old', nnodes_master, dim, "Symbol") |
generate_frictional_mortar_condition.var_strings = [] |
DEFINE VARIABLES AND DERIVATIVES #######################.
generate_frictional_mortar_condition.var_strings_aux_subs = [] |
generate_frictional_mortar_condition.var_strings_subs = [] |
generate_frictional_mortar_condition.w1 = custom_sympy_fe_utilities.DefineMatrix('w1',nnodes,dim, "Symbol") |
generate_frictional_mortar_condition.w2 = custom_sympy_fe_utilities.DefineMatrix('w2',nnodes_master,dim, "Symbol") |
generate_frictional_mortar_condition.wLM = custom_sympy_fe_utilities.DefineMatrix('wLM',nnodes,dim, "Symbol") |
generate_frictional_mortar_condition.wLMNormal = custom_sympy_fe_utilities.DefineVector('wLMNormal', nnodes) |
generate_frictional_mortar_condition.wLMTangent = custom_sympy_fe_utilities.DefineMatrix('wLMTangent', nnodes, dim) |
generate_frictional_mortar_condition.X1 = custom_sympy_fe_utilities.DefineMatrix('X1',nnodes,dim) |
generate_frictional_mortar_condition.X2 = custom_sympy_fe_utilities.DefineMatrix('X2',nnodes_master,dim) |