◆ __init__()
def convergence_accelerators.anderson.AndersonConvergenceAccelerator.__init__ |
( |
|
self, |
|
|
|
settings |
|
) |
| |
The constructor.
- Parameters
-
iteration_horizon | number of values to be stored of last iterations. |
alpha | Relaxation factor for computing the update. |
beta | weighting factor of constant relaxation |
p | factor for switch between constant relaxation and alternating anderson Gauß-Seidel/Jacobian method p = 1 results in the Anderson acceleration and p -> infinity results in constant relaxation |
◆ FinalizeSolutionStep()
def convergence_accelerators.anderson.AndersonConvergenceAccelerator.FinalizeSolutionStep |
( |
|
self | ) |
|
◆ InitializeSolutionStep()
def convergence_accelerators.anderson.AndersonConvergenceAccelerator.InitializeSolutionStep |
( |
|
self | ) |
|
◆ UpdateSolution()
def convergence_accelerators.anderson.AndersonConvergenceAccelerator.UpdateSolution |
( |
|
self, |
|
|
|
r, |
|
|
|
x |
|
) |
| |
UpdateSolution(r, x)
- Parameters
-
r | residual r_k |
x | solution x_k Computes the approximated update in each iteration. |
◆ alpha
convergence_accelerators.anderson.AndersonConvergenceAccelerator.alpha |
◆ beta
convergence_accelerators.anderson.AndersonConvergenceAccelerator.beta |
convergence_accelerators.anderson.AndersonConvergenceAccelerator.F |
For the first iteration, do relaxation only.
◆ iteration_counter
convergence_accelerators.anderson.AndersonConvergenceAccelerator.iteration_counter |
convergence_accelerators.anderson.AndersonConvergenceAccelerator.p |
convergence_accelerators.anderson.AndersonConvergenceAccelerator.V |
convergence_accelerators.anderson.AndersonConvergenceAccelerator.W |
convergence_accelerators.anderson.AndersonConvergenceAccelerator.X |
The documentation for this class was generated from the following file:
- /home/runner/work/Documentation/Documentation/master/applications/CoSimulationApplication/python_scripts/convergence_accelerators/anderson.py