56 template <SizeType TVoigtSize = 6>
73 static constexpr
double tolerance = std::numeric_limits<double>::epsilon();
131 double J3, lode_angle;
135 const double checker = std::abs(lode_angle * 180.0 /
Globals::Pi);
137 const double dilatancy = r_material_properties[DILATANCY_ANGLE] *
Globals::Pi / 180.0;
138 const double sin_dil = std::sin(dilatancy);
139 const double cos_dil = std::cos(dilatancy);
140 const double sin_theta = std::sin(lode_angle);
141 const double cos_theta = std::cos(lode_angle);
142 const double cos_3theta = std::cos(3.0 * lode_angle);
143 const double tan_theta = std::tan(lode_angle);
144 const double tan_3theta = std::tan(3.0 * lode_angle);
145 const double Root3 = std::sqrt(3.0);
147 const bool has_symmetric_yield_stress = r_material_properties.
Has(YIELD_STRESS);
148 const double compr_yield = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_COMPRESSION];
149 const double tensi_yield = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_TENSION];
150 const double n = compr_yield / tensi_yield;
152 const double angle_phi = (
Globals::Pi * 0.25) + dilatancy * 0.5;
153 const double alpha =
n / (std::tan(angle_phi) * std::tan(angle_phi));
155 const double CFL = 2.0 * std::tan(angle_phi) / cos_dil;
157 const double K1 = 0.5 * (1 +
alpha) - 0.5 * (1 -
alpha) * sin_dil;
158 const double K2 = 0.5 * (1 +
alpha) - 0.5 * (1 -
alpha) / sin_dil;
159 const double K3 = 0.5 * (1 +
alpha) * sin_dil - 0.5 * (1 -
alpha);
167 if (checker < 29.0) {
168 c2 = cos_theta *
CFL * (
K1 * (1 + tan_theta * tan_3theta) +
K2 * sin_dil * (tan_3theta - tan_theta) / Root3);
169 c3 =
CFL * (
K1 * Root3 * sin_theta +
K2 * sin_dil * cos_theta) / (2.0 *
J2 * cos_3theta);
175 c2 = 0.5 *
CFL * (
K1 * Root3 + Aux *
K2 * sin_dil / Root3);
178 noalias(rGFlux) = c1 * first_vector + c2 * second_vector + c3 * third_vector;
187 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(DILATANCY_ANGLE)) <<
"DILATANCY_ANGLE is not a defined value" << std::endl;
188 if (!rMaterialProperties.
Has(YIELD_STRESS)) {
189 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YIELD_STRESS_TENSION)) <<
"YIELD_STRESS_TENSION is not a defined value" << std::endl;
190 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YIELD_STRESS_COMPRESSION)) <<
"YIELD_STRESS_COMPRESSION is not a defined value" << std::endl;
192 const double yield_compression = rMaterialProperties[YIELD_STRESS_COMPRESSION];
193 const double yield_tension = rMaterialProperties[YIELD_STRESS_TENSION];
195 KRATOS_ERROR_IF(yield_compression <
tolerance) <<
"Yield stress in compression almost zero or negative, include YIELD_STRESS_COMPRESSION in definition";
196 KRATOS_ERROR_IF(yield_tension <
tolerance) <<
"Yield stress in tension almost zero or negative, include YIELD_STRESS_TENSION in definition";
198 const double yield_stress = rMaterialProperties[YIELD_STRESS];
200 KRATOS_ERROR_IF(yield_stress <
tolerance) <<
"Yield stress almost zero or negative, include YIELD_STRESS in definition";
static void CalculateSecondVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rSecondVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:100
static void CalculateFirstVector(BoundedVectorType &rFirstVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:80
static void CalculateThirdVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rThirdVector)
This method computes the third vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:131
static void CalculateLodeAngle(const double J2, const double J3, double &rLodeAngle)
This method computes the lode angle.
Definition: advanced_constitutive_law_utilities.cpp:158
static void CalculateJ3Invariant(const BoundedVectorType &rDeviator, double &rJ3)
This method computes the third invariant of J.
Definition: advanced_constitutive_law_utilities.cpp:62
This class defines a plastic potential following the theory of Mohr-Coulomb (modified)
Definition: modified_mohr_coulomb_plastic_potential.h:58
static constexpr double tolerance
The zero tolerance definition.
Definition: modified_mohr_coulomb_plastic_potential.h:73
static constexpr SizeType Dimension
We define the dimension.
Definition: modified_mohr_coulomb_plastic_potential.h:64
ModifiedMohrCoulombPlasticPotential(ModifiedMohrCoulombPlasticPotential const &rOther)
Copy constructor.
Definition: modified_mohr_coulomb_plastic_potential.h:85
static void CalculatePlasticPotentialDerivative(const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rGFlux, ConstitutiveLaw::Parameters &rValues)
This script calculates the derivatives of the plastic potential according to NAYAK-ZIENKIEWICZ paper ...
Definition: modified_mohr_coulomb_plastic_potential.h:115
KRATOS_CLASS_POINTER_DEFINITION(ModifiedMohrCoulombPlasticPotential)
Counted pointer of ModifiedMohrCoulombPlasticPotential.
ModifiedMohrCoulombPlasticPotential()
Initialization constructor.
Definition: modified_mohr_coulomb_plastic_potential.h:80
static constexpr SizeType VoigtSize
The define the Voigt size.
Definition: modified_mohr_coulomb_plastic_potential.h:67
ModifiedMohrCoulombPlasticPotential & operator=(ModifiedMohrCoulombPlasticPotential const &rOther)
Assignment operator.
Definition: modified_mohr_coulomb_plastic_potential.h:90
static int Check(const Properties &rMaterialProperties)
This method defines the check to be performed in the plastic potential.
Definition: modified_mohr_coulomb_plastic_potential.h:185
virtual ~ModifiedMohrCoulombPlasticPotential()
Destructor.
Definition: modified_mohr_coulomb_plastic_potential.h:96
Properties encapsulates data shared by different Elements or Conditions. It can store any type of dat...
Definition: properties.h:69
bool Has(TVariableType const &rThisVariable) const
Definition: properties.h:578
#define KRATOS_ERROR_IF_NOT(conditional)
Definition: exception.h:163
#define KRATOS_ERROR_IF(conditional)
Definition: exception.h:162
constexpr double Pi
Definition: global_variables.h:25
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
std::size_t SizeType
The definition of the size type.
Definition: mortar_classes.h:43
T & noalias(T &TheMatrix)
Definition: amatrix_interface.h:484
alpha
Definition: generate_convection_diffusion_explicit_element.py:113
float J2
Definition: isotropic_damage_automatic_differentiation.py:133
float K2
Definition: isotropic_damage_automatic_differentiation.py:178
float K3
Definition: isotropic_damage_automatic_differentiation.py:179
CFL
Definition: isotropic_damage_automatic_differentiation.py:156
def J3
Definition: isotropic_damage_automatic_differentiation.py:176
float K1
Definition: isotropic_damage_automatic_differentiation.py:177
int n
manufactured solution and derivatives (u=0 at z=0 dudz=0 at z=domain_height)
Definition: ode_solve.py:402
Definition: constitutive_law.h:189
const Properties & GetMaterialProperties()
Definition: constitutive_law.h:457