56 template <
class TPlasticPotentialType>
76 static constexpr
double tolerance = std::numeric_limits<double>::epsilon();
117 const Vector& rStrainVector,
118 double& rEquivalentStress,
124 const bool has_symmetric_yield_stress = r_material_properties.
Has(YIELD_STRESS);
125 const double yield_compression = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_COMPRESSION];
126 const double yield_tension = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_TENSION];
127 double friction_angle = r_material_properties[FRICTION_ANGLE] *
Globals::Pi / 180.0;
132 KRATOS_WARNING(
"ModifiedMohrCoulombYieldSurface") <<
"Friction Angle not defined, assumed equal to 32 deg " << std::endl;
136 const double R = std::abs(yield_compression / yield_tension);
137 const double Rmorh = std::pow(std::tan((
Globals::Pi / 4.0) + friction_angle / 2.0), 2);
139 const double sin_phi = std::sin(friction_angle);
153 rEquivalentStress = 0.0;
156 rEquivalentStress = (2.0 * std::tan(
Globals::Pi * 0.25 + friction_angle * 0.5) / std::cos(friction_angle)) * ((
I1 *
K3 / 3.0) +
157 std::sqrt(
J2) * (
K1 * std::cos(theta) -
K2 * std::sin(theta) *
sin_phi / std::sqrt(3.0)));
170 const double yield_compression = r_material_properties.
Has(YIELD_STRESS) ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_COMPRESSION];
171 rThreshold = std::abs(yield_compression);
190 TPlasticPotentialType::CalculatePlasticPotentialDerivative(rPredictiveStressVector, rDeviator,
J2, GFlux, rValues);
202 const double CharacteristicLength
207 const double fracture_energy = r_material_properties[FRACTURE_ENERGY];
208 const double young_modulus = r_material_properties[YOUNG_MODULUS];
209 const bool has_symmetric_yield_stress = r_material_properties.
Has(YIELD_STRESS);
210 const double yield_compression = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_COMPRESSION];
211 const double yield_tension = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_TENSION];
212 const double n = yield_compression / yield_tension;
215 rAParameter = 1.00 / (fracture_energy *
n *
n * young_modulus / (CharacteristicLength * std::pow(yield_compression, 2)) - 0.5);
216 KRATOS_DEBUG_ERROR_IF(rAParameter < 0.0) <<
"Fracture energy is too low, increase FRACTURE_ENERGY..." << std::endl;
218 rAParameter = -std::pow(yield_compression, 2) / (2.0 * young_modulus * fracture_energy *
n *
n / CharacteristicLength);
248 double J3, lode_angle;
252 const double checker = std::abs(lode_angle * 180.0 /
Globals::Pi);
255 double friction_angle = r_material_properties[FRICTION_ANGLE] *
Globals::Pi / 180.0;
260 KRATOS_WARNING(
"ModifiedMohrCoulombYieldSurface") <<
"Friction Angle not defined, assumed equal to 32 deg " << std::endl;
263 const double sin_phi = std::sin(friction_angle);
264 const double cons_phi = std::cos(friction_angle);
265 const double sin_theta = std::sin(lode_angle);
266 const double cos_theta = std::cos(lode_angle);
267 const double cos_3theta = std::cos(3.0 * lode_angle);
268 const double tan_theta = std::tan(lode_angle);
269 const double tan_3theta = std::tan(3.0 * lode_angle);
270 const double Root3 = std::sqrt(3.0);
272 const bool has_symmetric_yield_stress = r_material_properties.
Has(YIELD_STRESS);
273 const double compr_yield = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_COMPRESSION];
274 const double tens_yield = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_TENSION];
275 const double n = compr_yield / tens_yield;
277 const double angle_phi = (
Globals::Pi * 0.25) + friction_angle * 0.5;
278 const double alpha =
n / (std::tan(angle_phi) * std::tan(angle_phi));
280 const double CFL = 2.0 * std::tan(angle_phi) / cons_phi;
291 if (std::abs(checker) < 29.0) {
292 c2 = cos_theta *
CFL * (
K1 * (1.0 + tan_theta * tan_3theta) +
K2 *
sin_phi * (tan_3theta - tan_theta) / Root3);
293 c3 =
CFL * (
K1 * Root3 * sin_theta +
K2 *
sin_phi * cos_theta) / (2.0 *
J2 * cos_3theta);
301 noalias(rFFlux) = c1 * first_vector + c2 * second_vector + c3 * third_vector;
310 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(FRICTION_ANGLE)) <<
"FRICTION_ANGLE is not a defined value" << std::endl;
311 if (!rMaterialProperties.
Has(YIELD_STRESS)) {
312 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YIELD_STRESS_TENSION)) <<
"YIELD_STRESS_TENSION is not a defined value" << std::endl;
313 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YIELD_STRESS_COMPRESSION)) <<
"YIELD_STRESS_COMPRESSION is not a defined value" << std::endl;
315 const double yield_compression = rMaterialProperties[YIELD_STRESS_COMPRESSION];
316 const double yield_tension = rMaterialProperties[YIELD_STRESS_TENSION];
318 KRATOS_ERROR_IF(yield_compression <
tolerance) <<
"Yield stress in compression almost zero or negative, include YIELD_STRESS_COMPRESSION in definition";
319 KRATOS_ERROR_IF(yield_tension <
tolerance) <<
"Yield stress in tension almost zero or negative, include YIELD_STRESS_TENSION in definition";
321 const double yield_stress = rMaterialProperties[YIELD_STRESS];
323 KRATOS_ERROR_IF(yield_stress <
tolerance) <<
"Yield stress almost zero or negative, include YIELD_STRESS in definition";
325 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(FRACTURE_ENERGY)) <<
"FRACTURE_ENERGY is not a defined value" << std::endl;
326 KRATOS_ERROR_IF_NOT(rMaterialProperties.
Has(YOUNG_MODULUS)) <<
"YOUNG_MODULUS is not a defined value" << std::endl;
328 return TPlasticPotentialType::Check(rMaterialProperties);
347 const double yield_compression = rMaterialProperties[YIELD_STRESS_COMPRESSION];
348 const double yield_tension = rMaterialProperties[YIELD_STRESS_TENSION];
349 return yield_compression / yield_tension;
static void CalculateJ2Invariant(const TVector &rStressVector, const double I1, BoundedVectorType &rDeviator, double &rJ2)
This method computes the second invariant of J.
Definition: advanced_constitutive_law_utilities.h:157
static void CalculateSecondVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rSecondVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:100
static void CalculateFirstVector(BoundedVectorType &rFirstVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:80
static void CalculateThirdVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rThirdVector)
This method computes the third vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:131
static void CalculateLodeAngle(const double J2, const double J3, double &rLodeAngle)
This method computes the lode angle.
Definition: advanced_constitutive_law_utilities.cpp:158
static void CalculateI1Invariant(const TVector &rStressVector, double &rI1)
This method computes the first invariant from a given stress vector.
Definition: advanced_constitutive_law_utilities.h:116
static void CalculateJ3Invariant(const BoundedVectorType &rDeviator, double &rJ3)
This method computes the third invariant of J.
Definition: advanced_constitutive_law_utilities.cpp:62
This class defines a yield surface according to Modified Mohr-Coulumb theory.
Definition: modified_mohr_coulomb_yield_surface.h:58
KRATOS_CLASS_POINTER_DEFINITION(ModifiedMohrCoulombYieldSurface)
Counted pointer of ModifiedMohrCoulombYieldSurface.
static bool IsWorkingWithTensionThreshold()
This method returns true if the yield surfacecompares with the tension tield stress.
Definition: modified_mohr_coulomb_yield_surface.h:335
ModifiedMohrCoulombYieldSurface()
Initialization constructor.
Definition: modified_mohr_coulomb_yield_surface.h:83
virtual ~ModifiedMohrCoulombYieldSurface()
Destructor.
Definition: modified_mohr_coulomb_yield_surface.h:99
static constexpr double tolerance
The machine precision zero tolerance.
Definition: modified_mohr_coulomb_yield_surface.h:76
static constexpr SizeType VoigtSize
The Plastic potential already defines the Voigt size.
Definition: modified_mohr_coulomb_yield_surface.h:70
static void GetInitialUniaxialThreshold(ConstitutiveLaw::Parameters &rValues, double &rThreshold)
This method returns the initial uniaxial stress threshold.
Definition: modified_mohr_coulomb_yield_surface.h:166
static constexpr SizeType Dimension
The Plastic potential already defines the working simension size.
Definition: modified_mohr_coulomb_yield_surface.h:67
static void CalculateYieldSurfaceDerivative(const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rFFlux, ConstitutiveLaw::Parameters &rValues)
This script calculates the derivatives of the Yield Surf according to NAYAK-ZIENKIEWICZ paper Interna...
Definition: modified_mohr_coulomb_yield_surface.h:233
TPlasticPotentialType PlasticPotentialType
The type of potential plasticity.
Definition: modified_mohr_coulomb_yield_surface.h:64
static void CalculatePlasticPotentialDerivative(const array_1d< double, VoigtSize > &rPredictiveStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &GFlux, ConstitutiveLaw::Parameters &rValues)
This method calculates the derivative of the plastic potential DG/DS.
Definition: modified_mohr_coulomb_yield_surface.h:182
ModifiedMohrCoulombYieldSurface(ModifiedMohrCoulombYieldSurface const &rOther)
Copy constructor.
Definition: modified_mohr_coulomb_yield_surface.h:88
static double GetScaleFactorTension(const Properties &rMaterialProperties)
This method returns the scaling factor of the yield surface surfacecompares with the tension tield st...
Definition: modified_mohr_coulomb_yield_surface.h:345
static void CalculateEquivalentStress(const array_1d< double, VoigtSize > &rPredictiveStressVector, const Vector &rStrainVector, double &rEquivalentStress, ConstitutiveLaw::Parameters &rValues)
This method the uniaxial equivalent stress.
Definition: modified_mohr_coulomb_yield_surface.h:115
static int Check(const Properties &rMaterialProperties)
This method defines the check to be performed in the yield surface.
Definition: modified_mohr_coulomb_yield_surface.h:308
static void CalculateDamageParameter(ConstitutiveLaw::Parameters &rValues, double &rAParameter, const double CharacteristicLength)
This method returns the damage parameter needed in the exp/linear expressions of damage.
Definition: modified_mohr_coulomb_yield_surface.h:199
ModifiedMohrCoulombYieldSurface & operator=(ModifiedMohrCoulombYieldSurface const &rOther)
Assignment operator.
Definition: modified_mohr_coulomb_yield_surface.h:93
Properties encapsulates data shared by different Elements or Conditions. It can store any type of dat...
Definition: properties.h:69
bool Has(TVariableType const &rThisVariable) const
Definition: properties.h:578
#define KRATOS_ERROR_IF_NOT(conditional)
Definition: exception.h:163
#define KRATOS_ERROR_IF(conditional)
Definition: exception.h:162
#define KRATOS_DEBUG_ERROR_IF(conditional)
Definition: exception.h:171
#define KRATOS_WARNING(label)
Definition: logger.h:265
constexpr double Pi
Definition: global_variables.h:25
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
KratosZeroVector< double > ZeroVector
Definition: amatrix_interface.h:561
std::size_t SizeType
The definition of the size type.
Definition: mortar_classes.h:43
T & noalias(T &TheMatrix)
Definition: amatrix_interface.h:484
alpha
Definition: generate_convection_diffusion_explicit_element.py:113
float J2
Definition: isotropic_damage_automatic_differentiation.py:133
float K2
Definition: isotropic_damage_automatic_differentiation.py:178
float K3
Definition: isotropic_damage_automatic_differentiation.py:179
I1
Definition: isotropic_damage_automatic_differentiation.py:230
tuple alpha_r
Definition: isotropic_damage_automatic_differentiation.py:174
R
Definition: isotropic_damage_automatic_differentiation.py:172
CFL
Definition: isotropic_damage_automatic_differentiation.py:156
def J3
Definition: isotropic_damage_automatic_differentiation.py:176
sin_phi
Definition: isotropic_damage_automatic_differentiation.py:153
float K1
Definition: isotropic_damage_automatic_differentiation.py:177
int n
manufactured solution and derivatives (u=0 at z=0 dudz=0 at z=domain_height)
Definition: ode_solve.py:402
Definition: constitutive_law.h:189
const Properties & GetMaterialProperties()
Definition: constitutive_law.h:457