#include <structural_mechanics_math_utilities.hpp>
|
|
| static void | Comp_Orthonor_Vect (array_1d< double, 3 > &t1g, array_1d< double, 3 > &t2g, array_1d< double, 3 > &t3g, const array_1d< double, 3 > &vxe, const array_1d< double, 3 > &vye) |
| |
| static void | Comp_Orthonor_Base (array_1d< double, 3 > &t1g, array_1d< double, 3 > &t2g, array_1d< double, 3 > &t3g, const array_1d< double, 3 > &vxe, const array_1d< double, 3 > &Xdxi, const array_1d< double, 3 > &Xdeta) |
| |
| static void | Comp_Orthonor_Base (BoundedMatrix< double, 3, 3 > &t, const array_1d< double, 3 > &vxe, const array_1d< double, 3 > &Xdxi, const array_1d< double, 3 > &Xdeta) |
| |
| static Matrix | InterpolPrismGiD (const int nG) |
| |
| static bool | SolveSecondOrderEquation (const RealType &a, const RealType &b, const RealType &c, std::vector< RealType > &solution) |
| |
| static double | CalculateRadius (const Vector &N, const GeometryType &Geom, const Configuration ThisConfiguration=Current) |
| |
| static double | CalculateRadiusPoint (const GeometryType &Geom, const Configuration ThisConfiguration=Current) |
| |
| template<int TDim> |
| static void | TensorTransformation (BoundedMatrix< double, TDim, TDim > &rOriginLeft, BoundedMatrix< double, TDim, TDim > &rOriginRight, BoundedMatrix< double, TDim, TDim > &rTargetLeft, BoundedMatrix< double, TDim, TDim > &rTargetRight, BoundedMatrix< double, TDim, TDim > &rTensor) |
| |
◆ GeometryType
◆ NodeType
◆ RealType
◆ CalculateRadius()
Calculates the radius of axisymmetry
- Parameters
-
| N | The Gauss Point shape function |
| Geom | The geometry studied |
- Returns
- Radius: The radius of axisymmetry
◆ CalculateRadiusPoint()
Calculates the radius of axisymmetry for a point
- Parameters
-
- Returns
- The radius of axisymmetry
◆ Comp_Orthonor_Base() [1/2]
| static void Kratos::StructuralMechanicsMathUtilities::Comp_Orthonor_Base |
( |
array_1d< double, 3 > & |
t1g, |
|
|
array_1d< double, 3 > & |
t2g, |
|
|
array_1d< double, 3 > & |
t3g, |
|
|
const array_1d< double, 3 > & |
vxe, |
|
|
const array_1d< double, 3 > & |
Xdxi, |
|
|
const array_1d< double, 3 > & |
Xdeta |
|
) |
| |
|
inlinestatic |
It gives the orthonormal base based in the cartesian derivatives
- Returns
- tig: The orthonormal base
- Parameters
-
| vxe | X direction vector |
| Xdxi | and Xeta: Cartesian derivatives in xi and eta |
◆ Comp_Orthonor_Base() [2/2]
◆ Comp_Orthonor_Vect()
It gives the orthonormal base based in a orthogonal base
- Returns
- tig: The orthonormal base
- Parameters
-
| vxe | and vye: X and Y direction vector |
◆ InterpolPrismGiD()
| static Matrix Kratos::StructuralMechanicsMathUtilities::InterpolPrismGiD |
( |
const int |
nG | ) |
|
|
inlinestatic |
Gives the interpolation of two Gauss Points (to introduce in GiD the result)
- Parameters
-
- Returns
- Matrix of interpolations
◆ SolveSecondOrderEquation()
Calculates the solutions for a given second order polynomial equation 0 = a*x^2 + b*x + c
- Parameters
-
| a | coefficient |
| b | coefficient |
| c | coefficient |
| ZeroTol | number treated as zero |
- Returns
- Vector of solutions
◆ TensorTransformation()
template<int TDim>
| static void Kratos::StructuralMechanicsMathUtilities::TensorTransformation |
( |
BoundedMatrix< double, TDim, TDim > & |
rOriginLeft, |
|
|
BoundedMatrix< double, TDim, TDim > & |
rOriginRight, |
|
|
BoundedMatrix< double, TDim, TDim > & |
rTargetLeft, |
|
|
BoundedMatrix< double, TDim, TDim > & |
rTargetRight, |
|
|
BoundedMatrix< double, TDim, TDim > & |
rTensor |
|
) |
| |
|
inlinestatic |
Transforms a 2-point tensor from an origin system to a target system M=M_ij origin_left x origin_right = M_lk target_left X target_right
- Returns
- rOriginLeft: matrix with the basis vectors of basis origin left as columns
-
rOriginRight: matrix with the basis vectors of basis origin right as columns
-
rTargetLeft: matrix with the basis vectors of basis target left as columns
-
rTsargetRight: matrix with the basis vectors of basis target right as columns
-
rTensor: the tensor to be tranformed
The documentation for this class was generated from the following file: