53 template <
class TPlasticPotentialType>
75 static constexpr
double tolerance = std::numeric_limits<double>::epsilon();
119 const Vector& rStrainVector,
120 double& rEquivalentStress,
126 const bool has_symmetric_yield_stress = r_material_properties.
Has(YIELD_STRESS);
127 const double yield_compression = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_COMPRESSION];
128 const double yield_tension = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_TENSION];
134 KRATOS_WARNING(
"ModifiedMohrCoulombYieldSurface") <<
"Friction Angle not defined, assumed equal to 32 deg " << std::endl;
138 const double R = std::abs(yield_compression / yield_tension);
139 const double Rmorh = std::pow(std::tan((
Globals::Pi / 4.0) + friction_angle / 2.0), 2);
141 const double sin_phi = std::sin(friction_angle);
155 rEquivalentStress = 0.0;
158 rEquivalentStress = (2.0 * std::tan(
Globals::Pi * 0.25 + friction_angle * 0.5) / std::cos(friction_angle)) * ((
I1 *
K3 / 3.0) + std::sqrt(
J2) * (
K1 * std::cos(theta) -
K2 * std::sin(theta) *
sin_phi / std::sqrt(3.0)));
171 double yield_compression;
175 const double ref_temperature = r_material_properties.Has(REFERENCE_TEMPERATURE) ? r_material_properties[REFERENCE_TEMPERATURE] : rValues.
GetElementGeometry().
GetValue(REFERENCE_TEMPERATURE);
178 rThreshold = std::abs(yield_compression);
197 TPlasticPotentialType::CalculatePlasticPotentialDerivative(rStressVector, rDeviator,
J2, GFlux, rValues);
209 const double CharacteristicLength
218 const double fracture_energy = r_material_properties.
GetValue(FRACTURE_ENERGY, r_geom, r_N, r_process_info);
219 const double young_modulus = r_material_properties.
GetValue(YOUNG_MODULUS, r_geom, r_N, r_process_info);
220 const bool has_symmetric_yield_stress = r_material_properties.
Has(YIELD_STRESS);
222 const double yield_compression = has_symmetric_yield_stress ? r_material_properties.
GetValue(YIELD_STRESS, r_geom, r_N, r_process_info) : r_material_properties.
GetValue(YIELD_STRESS_COMPRESSION, r_geom, r_N, r_process_info);
223 const double yield_tension = has_symmetric_yield_stress ? r_material_properties.
GetValue(YIELD_STRESS, r_geom, r_N, r_process_info) : r_material_properties.
GetValue(YIELD_STRESS_TENSION, r_geom, r_N, r_process_info);
224 const double n = yield_compression / yield_tension;
227 rAParameter = 1.00 / (fracture_energy *
n *
n * young_modulus / (CharacteristicLength * std::pow(yield_compression, 2)) - 0.5);
228 KRATOS_ERROR_IF(rAParameter < 0.0) <<
"Fracture energy is too low, increase FRACTURE_ENERGY..." << std::endl;
230 rAParameter = -std::pow(yield_compression, 2) / (2.0 * young_modulus * fracture_energy *
n *
n / CharacteristicLength);
262 double J3, lode_angle;
266 const double checker = std::abs(lode_angle * 180.0 /
Globals::Pi);
274 KRATOS_WARNING(
"ModifiedMohrCoulombYieldSurface") <<
"Friction Angle not defined, assumed equal to 32 deg " << std::endl;
277 const double sin_phi = std::sin(friction_angle);
278 const double cons_phi = std::cos(friction_angle);
279 const double sin_theta = std::sin(lode_angle);
280 const double cos_theta = std::cos(lode_angle);
281 const double cos_3theta = std::cos(3.0 * lode_angle);
282 const double tan_theta = std::tan(lode_angle);
283 const double tan_3theta = std::tan(3.0 * lode_angle);
284 const double Root3 = std::sqrt(3.0);
286 const bool has_symmetric_yield_stress = r_material_properties.
Has(YIELD_STRESS);
287 const double compr_yield = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_COMPRESSION];
288 const double tens_yield = has_symmetric_yield_stress ? r_material_properties[YIELD_STRESS] : r_material_properties[YIELD_STRESS_TENSION];
290 const double n = compr_yield / tens_yield;
292 const double angle_phi = (
Globals::Pi * 0.25) + friction_angle * 0.5;
293 const double alpha =
n / (std::tan(angle_phi) * std::tan(angle_phi));
295 const double CFL = 2.0 * std::tan(angle_phi) / cons_phi;
306 if (std::abs(checker) < 29.0) {
307 c2 = cos_theta *
CFL * (
K1 * (1.0 + tan_theta * tan_3theta) +
K2 *
sin_phi * (tan_3theta - tan_theta) / Root3);
308 c3 =
CFL * (
K1 * Root3 * sin_theta +
K2 *
sin_phi * cos_theta) / (2.0 *
J2 * cos_3theta);
316 noalias(rFFlux) = c1 * first_vector + c2 * second_vector + c3 * third_vector;
This class includes several utilities necessaries for the computation of the constitutive law.
Definition: advanced_constitutive_law_utilities.h:59
static void CalculateJ2Invariant(const TVector &rStressVector, const double I1, BoundedVectorType &rDeviator, double &rJ2)
This method computes the second invariant of J.
Definition: advanced_constitutive_law_utilities.h:157
static void CalculateSecondVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rSecondVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:100
static void CalculateFirstVector(BoundedVectorType &rFirstVector)
This method computes the first vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:80
static double GetPropertyFromTemperatureTable(const Variable< double > &rVariable, ConstitutiveLaw::Parameters &rValues, const double Temperature)
This retrieves a double type variable from a table if exists, assumes TEMPERATURE to be the independe...
Definition: advanced_constitutive_law_utilities.cpp:833
static void CalculateThirdVector(const BoundedVectorType &rDeviator, const double J2, BoundedVectorType &rThirdVector)
This method computes the third vector to be used in the derivative of the yield surface.
Definition: advanced_constitutive_law_utilities.cpp:131
static double GetMaterialPropertyThroughAccessor(const Variable< double > &rVariable, ConstitutiveLaw::Parameters &rValues)
This retrieves a double type variable checking the accessor.
Definition: advanced_constitutive_law_utilities.cpp:818
static void CalculateLodeAngle(const double J2, const double J3, double &rLodeAngle)
This method computes the lode angle.
Definition: advanced_constitutive_law_utilities.cpp:158
static void CalculateI1Invariant(const TVector &rStressVector, double &rI1)
This method computes the first invariant from a given stress vector.
Definition: advanced_constitutive_law_utilities.h:116
static void CalculateJ3Invariant(const BoundedVectorType &rDeviator, double &rJ3)
This method computes the third invariant of J.
Definition: advanced_constitutive_law_utilities.cpp:62
TVariableType::Type & GetValue(const TVariableType &rThisVariable)
Definition: geometry.h:627
This class defines a yield surface according to Modified Mohr-Coulumb theory.
Definition: modified_mohr_coulomb_yield_surface.h:58
static bool IsWorkingWithTensionThreshold()
This method returns true if the yield surfacecompares with the tension tield stress.
Definition: modified_mohr_coulomb_yield_surface.h:335
static double GetScaleFactorTension(const Properties &rMaterialProperties)
This method returns the scaling factor of the yield surface surfacecompares with the tension tield st...
Definition: modified_mohr_coulomb_yield_surface.h:345
static int Check(const Properties &rMaterialProperties)
This method defines the check to be performed in the yield surface.
Definition: modified_mohr_coulomb_yield_surface.h:308
Properties encapsulates data shared by different Elements or Conditions. It can store any type of dat...
Definition: properties.h:69
TVariableType::Type & GetValue(const TVariableType &rVariable)
Definition: properties.h:228
bool Has(TVariableType const &rThisVariable) const
Definition: properties.h:578
This class defines a yield surface according to Modified Mohr-Coulumb theory.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:55
static void CalculateEquivalentStress(const array_1d< double, VoigtSize > &rStressVector, const Vector &rStrainVector, double &rEquivalentStress, ConstitutiveLaw::Parameters &rValues)
This method the uniaxial equivalent stress.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:117
static bool IsWorkingWithTensionThreshold()
This method returns true if the yield surfacecompares with the tension tield stress.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:332
static constexpr SizeType VoigtSize
The Plastic potential already defines the Voigt size.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:69
virtual ~ThermalModifiedMohrCoulombYieldSurface()
Destructor.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:101
TPlasticPotentialType PlasticPotentialType
The type of potential plasticity.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:61
KRATOS_CLASS_POINTER_DEFINITION(ThermalModifiedMohrCoulombYieldSurface)
Counted pointer of ThermalModifiedMohrCoulombYieldSurface.
static void GetInitialUniaxialThreshold(ConstitutiveLaw::Parameters &rValues, double &rThreshold)
This method returns the initial uniaxial stress threshold.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:167
static void CalculateDamageParameter(ConstitutiveLaw::Parameters &rValues, double &rAParameter, const double CharacteristicLength)
This method returns the damage parameter needed in the exp/linear expressions of damage.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:206
ThermalModifiedMohrCoulombYieldSurface()
Initialization constructor.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:85
static int Check(const Properties &rMaterialProperties)
This method defines the check to be performed in the yield surface.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:323
static void CalculatePlasticPotentialDerivative(const array_1d< double, VoigtSize > &rStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &GFlux, ConstitutiveLaw::Parameters &rValues)
This method calculates the derivative of the plastic potential DG/DS.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:189
static constexpr double tolerance
The machine precision zero tolerance.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:75
ThermalModifiedMohrCoulombYieldSurface & operator=(ThermalModifiedMohrCoulombYieldSurface const &rOther)
Assignment operator.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:95
static double GetScaleFactorTension(const Properties &rMaterialProperties)
This method returns the scaling factor of the yield surface surfacecompares with the tension tield st...
Definition: thermal_modified_mohr_coulomb_yield_surface.h:342
static void CalculateYieldSurfaceDerivative(const array_1d< double, VoigtSize > &rStressVector, const array_1d< double, VoigtSize > &rDeviator, const double J2, array_1d< double, VoigtSize > &rFFlux, ConstitutiveLaw::Parameters &rValues)
This script calculates the derivatives of the Yield Surf according to NAYAK-ZIENKIEWICZ paper Interna...
Definition: thermal_modified_mohr_coulomb_yield_surface.h:247
static constexpr SizeType Dimension
The Plastic potential already defines the working simension size.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:66
ThermalModifiedMohrCoulombYieldSurface(ThermalModifiedMohrCoulombYieldSurface const &rOther)
Copy constructor.
Definition: thermal_modified_mohr_coulomb_yield_surface.h:90
#define KRATOS_ERROR_IF(conditional)
Definition: exception.h:162
#define KRATOS_WARNING(label)
Definition: logger.h:265
constexpr double Pi
Definition: global_variables.h:25
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
KratosZeroVector< double > ZeroVector
Definition: amatrix_interface.h:561
std::size_t SizeType
The definition of the size type.
Definition: mortar_classes.h:43
T & noalias(T &TheMatrix)
Definition: amatrix_interface.h:484
alpha
Definition: generate_convection_diffusion_explicit_element.py:113
float J2
Definition: isotropic_damage_automatic_differentiation.py:133
float K2
Definition: isotropic_damage_automatic_differentiation.py:178
float K3
Definition: isotropic_damage_automatic_differentiation.py:179
I1
Definition: isotropic_damage_automatic_differentiation.py:230
tuple alpha_r
Definition: isotropic_damage_automatic_differentiation.py:174
R
Definition: isotropic_damage_automatic_differentiation.py:172
CFL
Definition: isotropic_damage_automatic_differentiation.py:156
def J3
Definition: isotropic_damage_automatic_differentiation.py:176
sin_phi
Definition: isotropic_damage_automatic_differentiation.py:153
float K1
Definition: isotropic_damage_automatic_differentiation.py:177
int n
manufactured solution and derivatives (u=0 at z=0 dudz=0 at z=domain_height)
Definition: ode_solve.py:402
Definition: constitutive_law.h:189
const GeometryType & GetElementGeometry()
Definition: constitutive_law.h:462
const Vector & GetShapeFunctionsValues()
Definition: constitutive_law.h:419
bool IsSetShapeFunctionsValues()
Definition: constitutive_law.h:483
const ProcessInfo & GetProcessInfo()
Definition: constitutive_law.h:452
const Properties & GetMaterialProperties()
Definition: constitutive_law.h:457