26 #include "utilities/geometry_utilities.h"
222 typename PointType::Pointer pSecondPoint,
223 typename PointType::Pointer pThirdPoint,
224 typename PointType::Pointer pFourthPoint,
225 typename PointType::Pointer pFifthPoint,
226 typename PointType::Pointer pSixthPoint
240 ) :
BaseType( ThisPoints, &msGeometryData )
249 ) :
BaseType(GeometryId, rThisPoints, &msGeometryData)
256 const std::string& rGeometryName,
258 ) :
BaseType(rGeometryName, rThisPoints, &msGeometryData)
341 template<
class TOtherPo
intType>
361 return typename BaseType::Pointer(
new Triangle3D6( rThisPoints ) );
375 return typename BaseType::Pointer(
new Triangle3D6( NewGeometryId, rThisPoints ) );
387 auto p_geometry =
typename BaseType::Pointer(
new Triangle3D6( rGeometry.
Points() ) );
388 p_geometry->SetData(rGeometry.
GetData());
403 auto p_geometry =
typename BaseType::Pointer(
new Triangle3D6( NewGeometryId, rGeometry.
Points() ) );
404 p_geometry->SetData(rGeometry.
GetData());
415 rResult.
resize( 6, 2,
false );
417 rResult( 0, 0 ) = 0.0;
418 rResult( 0, 1 ) = 0.0;
419 rResult( 1, 0 ) = 1.0;
420 rResult( 1, 1 ) = 0.0;
421 rResult( 2, 0 ) = 0.0;
422 rResult( 2, 1 ) = 1.0;
423 rResult( 3, 0 ) = 0.5;
424 rResult( 3, 1 ) = 0.0;
425 rResult( 4, 0 ) = 0.5;
426 rResult( 4, 1 ) = 0.5;
427 rResult( 5, 0 ) = 0.0;
428 rResult( 5, 1 ) = 0.5;
509 const double Tolerance = std::numeric_limits<double>::epsilon()
514 if ( (rResult[0] >= (0.0-Tolerance)) && (rResult[0] <= (1.0+Tolerance)) )
516 if ( (rResult[1] >= (0.0-Tolerance)) && (rResult[1] <= (1.0+Tolerance)) )
518 if ( (rResult[0] + rResult[1]) <= (1.0+Tolerance) )
548 double thirdCoord = 1 - rPoint[0] - rPoint[1];
550 switch ( ShapeFunctionIndex )
553 return( thirdCoord*( 2*thirdCoord - 1 ) );
555 return( rPoint[0]*( 2*rPoint[0] - 1 ) );
557 return( rPoint[1]*( 2*rPoint[1] - 1 ) );
559 return( 4*thirdCoord*rPoint[0] );
561 return( 4*rPoint[0]*rPoint[1] );
563 return( 4*rPoint[1]*thirdCoord );
566 KRATOS_ERROR <<
"Wrong index of shape function!" << *
this << std::endl;
590 const double Tolerance = std::numeric_limits<double>::epsilon()
593 const Point point(rPointGlobalCoordinates);
608 std::string
Info()
const override
610 return "2 dimensional triangle with six nodes in 3D space";
621 rOStream <<
"2 dimensional triangle with six nodes in 3D space";
642 std::cout << std::endl;
648 rOStream <<
" Jacobian in the origin\t : " << jacobian;
698 = CalculateShapeFunctionsIntegrationPointsLocalGradients( ThisMethod );
699 const int integration_points_number
703 for (
int pnt = 0; pnt < integration_points_number; pnt++ )
705 Result[pnt] = localGradients[pnt];
719 = CalculateShapeFunctionsIntegrationPointsLocalGradients( ThisMethod );
720 const int integration_points_number
724 for (
int pnt = 0; pnt < integration_points_number; pnt++ )
726 Result[pnt] = localGradients[pnt];
744 rResult.
resize( 6, 2,
false );
745 double thirdCoord = 1 - rPoint[0] - rPoint[1];
746 double thirdCoord_DX = -1;
747 double thirdCoord_DY = -1;
750 rResult( 0, 0 ) = ( 4 * thirdCoord - 1 ) * thirdCoord_DX;
751 rResult( 0, 1 ) = ( 4 * thirdCoord - 1 ) * thirdCoord_DY;
752 rResult( 1, 0 ) = 4 * rPoint[0] - 1;
755 rResult( 2, 1 ) = 4 * rPoint[1] - 1;
756 rResult( 3, 0 ) = 4 * thirdCoord_DX * rPoint[0] + 4 * thirdCoord;
757 rResult( 3, 1 ) = 4 * thirdCoord_DY * rPoint[0];
758 rResult( 4, 0 ) = 4 * rPoint[1];
759 rResult( 4, 1 ) = 4 * rPoint[0];
760 rResult( 5, 0 ) = 4 * rPoint[1] * thirdCoord_DX;
761 rResult( 5, 1 ) = 4 * rPoint[1] * thirdCoord_DY + 4 * thirdCoord;
778 rResult.
resize( 6, 2 ,
false);
779 double thirdCoord = 1 - rPoint[0] - rPoint[1];
780 double thirdCoord_DX = -1;
781 double thirdCoord_DY = -1;
784 rResult( 0, 0 ) = ( 4 * thirdCoord - 1 ) * thirdCoord_DX;
785 rResult( 0, 1 ) = ( 4 * thirdCoord - 1 ) * thirdCoord_DY;
786 rResult( 1, 0 ) = 4 * rPoint[0] - 1;
789 rResult( 2, 1 ) = 4 * rPoint[1] - 1;
790 rResult( 3, 0 ) = 4 * thirdCoord_DX * rPoint[0] + 4 * thirdCoord;
791 rResult( 3, 1 ) = 4 * thirdCoord_DY * rPoint[0];
792 rResult( 4, 0 ) = 4 * rPoint[1];
793 rResult( 4, 1 ) = 4 * rPoint[0];
794 rResult( 5, 0 ) = 4 * rPoint[1] * thirdCoord_DX;
795 rResult( 5, 1 ) = 4 * rPoint[1] * thirdCoord_DY + 4 * thirdCoord;
807 if ( rResult.size() != this->PointsNumber() )
815 rResult[0].
resize( 2, 2 ,
false);
816 rResult[1].
resize( 2, 2 ,
false);
817 rResult[2].
resize( 2, 2 ,
false);
818 rResult[3].
resize( 2, 2 ,
false);
819 rResult[4].
resize( 2, 2 ,
false);
820 rResult[5].
resize( 2, 2 ,
false);
822 rResult[0]( 0, 0 ) = 4.0;
823 rResult[0]( 0, 1 ) = 4.0;
824 rResult[0]( 1, 0 ) = 4.0;
825 rResult[0]( 1, 1 ) = 4.0;
826 rResult[1]( 0, 0 ) = 4.0;
827 rResult[1]( 0, 1 ) = 0.0;
828 rResult[1]( 1, 0 ) = 0.0;
829 rResult[1]( 1, 1 ) = 0.0;
830 rResult[2]( 0, 0 ) = 0.0;
831 rResult[2]( 0, 1 ) = 0.0;
832 rResult[2]( 1, 0 ) = 0.0;
833 rResult[2]( 1, 1 ) = 4.0;
834 rResult[3]( 0, 0 ) = -8.0;
835 rResult[3]( 0, 1 ) = -4.0;
836 rResult[3]( 1, 0 ) = -4.0;
837 rResult[3]( 1, 1 ) = 0.0;
838 rResult[4]( 0, 0 ) = 0.0;
839 rResult[4]( 0, 1 ) = 4.0;
840 rResult[4]( 1, 0 ) = 4.0;
841 rResult[4]( 1, 1 ) = 0.0;
842 rResult[5]( 0, 0 ) = 0.0;
843 rResult[5]( 0, 1 ) = -4.0;
844 rResult[5]( 1, 0 ) = -4.0;
845 rResult[5]( 1, 1 ) = -8.0;
858 if ( rResult.size() != this->PointsNumber() )
863 for ( IndexType
i = 0;
i < rResult.size();
i++ )
868 rResult[0][0].
resize( 2, 2,
false );
870 rResult[0][1].
resize( 2, 2,
false );
871 rResult[1][0].
resize( 2, 2,
false );
872 rResult[1][1].
resize( 2, 2 ,
false);
873 rResult[2][0].
resize( 2, 2 ,
false);
874 rResult[2][1].
resize( 2, 2 ,
false);
875 rResult[3][0].
resize( 2, 2 ,
false);
876 rResult[3][1].
resize( 2, 2 ,
false);
877 rResult[4][0].
resize( 2, 2 ,
false);
878 rResult[4][1].
resize( 2, 2 ,
false);
879 rResult[5][0].
resize( 2, 2 ,
false);
880 rResult[5][1].
resize( 2, 2 ,
false);
883 for (
int i = 0;
i < 6;
i++ )
885 rResult[
i][0]( 0, 0 ) = 0.0;
886 rResult[
i][0]( 0, 1 ) = 0.0;
887 rResult[
i][0]( 1, 0 ) = 0.0;
888 rResult[
i][0]( 1, 1 ) = 0.0;
889 rResult[
i][1]( 0, 0 ) = 0.0;
890 rResult[
i][1]( 0, 1 ) = 0.0;
891 rResult[
i][1]( 1, 0 ) = 0.0;
892 rResult[
i][1]( 1, 1 ) = 0.0;
923 void save(
Serializer& rSerializer )
const override
959 static Matrix CalculateShapeFunctionsIntegrationPointsValues(
963 AllIntegrationPoints();
966 const int integration_points_number = integration_points.size();
968 const int points_number = 6;
970 Matrix shape_function_values( integration_points_number, points_number );
973 for (
int pnt = 0; pnt < integration_points_number; pnt++ )
975 double thirdCoord = 1 - integration_points[pnt].X() - integration_points[pnt].Y();
977 shape_function_values( pnt, 0 ) = thirdCoord * ( 2 * thirdCoord - 1 ) ;
978 shape_function_values( pnt, 1 ) = integration_points[pnt].X() * ( 2 * integration_points[pnt].X() - 1 ) ;
979 shape_function_values( pnt, 2 ) = integration_points[pnt].Y() * ( 2 * integration_points[pnt].Y() - 1 ) ;
980 shape_function_values( pnt, 3 ) = 4 * thirdCoord * integration_points[pnt].X();
981 shape_function_values( pnt, 4 ) = 4 * integration_points[pnt].X() * integration_points[pnt].Y();
982 shape_function_values( pnt, 5 ) = 4 * integration_points[pnt].Y() * thirdCoord;
986 return shape_function_values;
1002 CalculateShapeFunctionsIntegrationPointsLocalGradients(
1006 AllIntegrationPoints();
1009 const int integration_points_number = integration_points.size();
1015 for (
int pnt = 0; pnt < integration_points_number; pnt++ )
1018 double thirdCoord = 1 - integration_points[pnt].X() - integration_points[pnt].Y();
1019 double thirdCoord_DX = -1;
1020 double thirdCoord_DY = -1;
1023 result( 0, 0 ) = ( 4 * thirdCoord - 1 ) * thirdCoord_DX;
1024 result( 0, 1 ) = ( 4 * thirdCoord - 1 ) * thirdCoord_DY;
1025 result( 1, 0 ) = 4 * integration_points[pnt].X() - 1;
1028 result( 2, 1 ) = 4 * integration_points[pnt].Y() - 1;
1029 result( 3, 0 ) = 4 * thirdCoord_DX * integration_points[pnt].X() + 4 * thirdCoord;
1030 result( 3, 1 ) = 4 * thirdCoord_DY * integration_points[pnt].X();
1031 result( 4, 0 ) = 4 * integration_points[pnt].Y();
1032 result( 4, 1 ) = 4 * integration_points[pnt].X();
1033 result( 5, 0 ) = 4 * integration_points[pnt].Y() * thirdCoord_DX;
1034 result( 5, 1 ) = 4 * integration_points[pnt].Y() * thirdCoord_DY + 4 * thirdCoord;
1036 d_shape_f_values[pnt] = result;
1039 return d_shape_f_values;
1050 Quadrature<TriangleGaussLegendreIntegrationPoints1, 2, IntegrationPoint<3> >::GenerateIntegrationPoints(),
1051 Quadrature<TriangleGaussLegendreIntegrationPoints2, 2, IntegrationPoint<3> >::GenerateIntegrationPoints(),
1052 Quadrature<TriangleGaussLegendreIntegrationPoints3, 2, IntegrationPoint<3> >::GenerateIntegrationPoints()
1055 return integration_points;
1066 Triangle3D6<TPointType>::CalculateShapeFunctionsIntegrationPointsValues(
1068 Triangle3D6<TPointType>::CalculateShapeFunctionsIntegrationPointsValues(
1070 Triangle3D6<TPointType>::CalculateShapeFunctionsIntegrationPointsValues(
1074 return shape_functions_values;
1081 AllShapeFunctionsLocalGradients()
1091 return shape_functions_local_gradients;
1129 std::istream& rIStream,
1135 std::ostream& rOStream,
1139 rOStream << std::endl;
1146 template<
class TPo
intType>
const
1147 GeometryData Triangle3D6<TPointType>::msGeometryData(
1150 Triangle3D6<TPointType>::AllIntegrationPoints(),
1151 Triangle3D6<TPointType>::AllShapeFunctionsValues(),
1152 AllShapeFunctionsLocalGradients()
1155 template<
class TPo
intType>
const
Definition: geometry_data.h:60
KratosGeometryType
Definition: geometry_data.h:110
SizeType IntegrationPointsNumber() const
Definition: geometry_data.h:430
IntegrationMethod
Definition: geometry_data.h:76
KratosGeometryFamily
Definition: geometry_data.h:91
IntegrationMethod DefaultIntegrationMethod() const
Definition: geometry_data.h:425
Definition: geometry_dimension.h:42
Geometry base class.
Definition: geometry.h:71
SizeType PointsNumber() const
Definition: geometry.h:528
virtual void PrintData(std::ostream &rOStream) const
Print object's data.
Definition: geometry.h:3834
Geometry & operator=(const Geometry &rOther)
Definition: geometry.h:400
std::vector< IntegrationPointType > IntegrationPointsArrayType
Definition: geometry.h:161
DataValueContainer & GetData()
Definition: geometry.h:591
std::size_t SizeType
Definition: geometry.h:144
const TPointType::Pointer pGetPoint(const int Index) const
Definition: geometry.h:1790
std::size_t IndexType
Definition: geometry.h:137
std::array< Matrix, static_cast< int >GeometryData::IntegrationMethod::NumberOfIntegrationMethods)> ShapeFunctionsValuesContainerType
Definition: geometry.h:172
Vector & DeterminantOfJacobian(Vector &rResult) const
Definition: geometry.h:3154
virtual CoordinatesArrayType & PointLocalCoordinates(CoordinatesArrayType &rResult, const CoordinatesArrayType &rPoint) const
Returns the local coordinates of a given arbitrary point.
Definition: geometry.h:1854
const PointsArrayType & Points() const
Definition: geometry.h:1768
bool AllPointsAreValid() const
Checks if the geometry points are valid Checks if the geometry points are valid from the pointer valu...
Definition: geometry.h:4093
std::array< IntegrationPointsArrayType, static_cast< int >GeometryData::IntegrationMethod::NumberOfIntegrationMethods)> IntegrationPointsContainerType
Definition: geometry.h:167
JacobiansType & Jacobian(JacobiansType &rResult) const
Definition: geometry.h:2901
TPointType const & GetPoint(const int Index) const
Definition: geometry.h:1816
GeometryData::ShapeFunctionsLocalGradientsContainerType ShapeFunctionsLocalGradientsContainerType
Definition: geometry.h:177
GeometryData::IntegrationMethod IntegrationMethod
Definition: geometry.h:122
static double PointDistanceToTriangle3D(const Point &rTrianglePoint1, const Point &rTrianglePoint2, const Point &rTrianglePoint3, const Point &rPoint)
This function calculates the distance of a 3D point to a 3D triangle.
Definition: geometry_utilities.cpp:172
Short class definition.
Definition: integration_point.h:52
static double ComputeDomainSize(const TGeometryType &rGeometry)
This method calculates and returns the domain size of the geometry from any geometry in a generic man...
Definition: integration_utilities.h:63
Definition: amatrix_interface.h:41
void swap(Matrix &Other)
Definition: amatrix_interface.h:289
void resize(std::size_t NewSize1, std::size_t NewSize2, bool preserve=0)
Definition: amatrix_interface.h:224
An three node 3D line geometry with quadratic shape functions.
Definition: line_3d_3.h:66
Point class.
Definition: point.h:59
PointerVector is a container like stl vector but using a vector to store pointers to its data.
Definition: pointer_vector.h:72
void push_back(const TPointerType &x)
Definition: pointer_vector.h:270
The serialization consists in storing the state of an object into a storage format like data file or ...
Definition: serializer.h:123
A six node 3D triangular geometry with quadratic shape functions.
Definition: triangle_3d_6.h:68
Triangle3D6(const PointsArrayType &ThisPoints)
Definition: triangle_3d_6.h:238
Triangle3D6(const std::string &rGeometryName, const PointsArrayType &rThisPoints)
Constructor with Geometry Name.
Definition: triangle_3d_6.h:255
GeometryData::KratosGeometryType GetGeometryType() const override
Definition: triangle_3d_6.h:304
GeometryData::KratosGeometryFamily GetGeometryFamily() const override
Definition: triangle_3d_6.h:299
BaseType::Pointer Create(const IndexType NewGeometryId, PointsArrayType const &rThisPoints) const override
Creates a new geometry pointer.
Definition: triangle_3d_6.h:370
Triangle3D6(Triangle3D6 const &rOther)
Definition: triangle_3d_6.h:272
GeometryData::IntegrationMethod IntegrationMethod
Definition: triangle_3d_6.h:92
Line3D3< TPointType > EdgeType
Definition: triangle_3d_6.h:82
ShapeFunctionsSecondDerivativesType & ShapeFunctionsSecondDerivatives(ShapeFunctionsSecondDerivativesType &rResult, const CoordinatesArrayType &rPoint) const override
Definition: triangle_3d_6.h:805
BaseType::PointsArrayType PointsArrayType
Definition: triangle_3d_6.h:124
double ShapeFunctionValue(IndexType ShapeFunctionIndex, const CoordinatesArrayType &rPoint) const override
Definition: triangle_3d_6.h:544
BaseType::IntegrationPointType IntegrationPointType
Definition: triangle_3d_6.h:135
bool IsInside(const CoordinatesArrayType &rPoint, CoordinatesArrayType &rResult, const double Tolerance=std::numeric_limits< double >::epsilon()) const override
Returns whether given arbitrary point is inside the Geometry and the respective local point for the g...
Definition: triangle_3d_6.h:506
BaseType::IndexType IndexType
Definition: triangle_3d_6.h:111
TPointType PointType
Definition: triangle_3d_6.h:103
Geometry< TPointType > BaseType
Definition: triangle_3d_6.h:77
Matrix & ShapeFunctionsLocalGradients(Matrix &rResult, const CoordinatesArrayType &rPoint) const override
Definition: triangle_3d_6.h:741
virtual ShapeFunctionsGradientsType ShapeFunctionsLocalGradients(IntegrationMethod ThisMethod)
Definition: triangle_3d_6.h:694
virtual ShapeFunctionsGradientsType ShapeFunctionsLocalGradients()
Definition: triangle_3d_6.h:715
Triangle3D6 & operator=(Triangle3D6< TOtherPointType > const &rOther)
Definition: triangle_3d_6.h:342
void PrintData(std::ostream &rOStream) const override
Definition: triangle_3d_6.h:638
BaseType::ShapeFunctionsValuesContainerType ShapeFunctionsValuesContainerType
Definition: triangle_3d_6.h:157
BaseType::CoordinatesArrayType CoordinatesArrayType
Definition: triangle_3d_6.h:129
std::string Info() const override
Definition: triangle_3d_6.h:608
BaseType::IntegrationPointsArrayType IntegrationPointsArrayType
Definition: triangle_3d_6.h:144
double DomainSize() const override
This method calculates and returns length, area or volume of this geometry depending to it's dimensio...
Definition: triangle_3d_6.h:493
BaseType::Pointer Create(PointsArrayType const &rThisPoints) const override
Creates a new geometry pointer.
Definition: triangle_3d_6.h:357
SizeType EdgesNumber() const override
This method gives you number of all edges of this geometry.
Definition: triangle_3d_6.h:667
Triangle3D6(Triangle3D6< TOtherPointType > const &rOther)
Definition: triangle_3d_6.h:289
BaseType::SizeType SizeType
Definition: triangle_3d_6.h:118
Triangle3D6 & operator=(const Triangle3D6 &rOther)
Definition: triangle_3d_6.h:324
Triangle3D6(const IndexType GeometryId, const PointsArrayType &rThisPoints)
Constructor with Geometry Id.
Definition: triangle_3d_6.h:246
double CalculateDistance(const CoordinatesArrayType &rPointGlobalCoordinates, const double Tolerance=std::numeric_limits< double >::epsilon()) const override
Computes the distance between an point in global coordinates and the closest point of this geometry....
Definition: triangle_3d_6.h:588
BaseType::Pointer Create(const BaseType &rGeometry) const override
Creates a new geometry pointer.
Definition: triangle_3d_6.h:383
BaseType::ShapeFunctionsLocalGradientsContainerType ShapeFunctionsLocalGradientsContainerType
Definition: triangle_3d_6.h:163
Triangle3D6(typename PointType::Pointer pFirstPoint, typename PointType::Pointer pSecondPoint, typename PointType::Pointer pThirdPoint, typename PointType::Pointer pFourthPoint, typename PointType::Pointer pFifthPoint, typename PointType::Pointer pSixthPoint)
Definition: triangle_3d_6.h:221
BaseType::JacobiansType JacobiansType
Definition: triangle_3d_6.h:170
virtual Matrix & ShapeFunctionsGradients(Matrix &rResult, CoordinatesArrayType &rPoint)
Definition: triangle_3d_6.h:776
BaseType::IntegrationPointsContainerType IntegrationPointsContainerType
Definition: triangle_3d_6.h:151
BaseType::Pointer Create(const IndexType NewGeometryId, const BaseType &rGeometry) const override
Creates a new geometry pointer.
Definition: triangle_3d_6.h:398
double Area() const override
This method calculates and returns area or surface area of this geometry depending to it's dimension.
Definition: triangle_3d_6.h:465
Matrix & PointsLocalCoordinates(Matrix &rResult) const override
Definition: triangle_3d_6.h:413
BaseType::ShapeFunctionsSecondDerivativesType ShapeFunctionsSecondDerivativesType
Definition: triangle_3d_6.h:185
BaseType::GeometriesArrayType GeometriesArrayType
Definition: triangle_3d_6.h:98
BaseType::NormalType NormalType
Definition: triangle_3d_6.h:198
double Length() const override
Definition: triangle_3d_6.h:451
~Triangle3D6() override
Definition: triangle_3d_6.h:297
KRATOS_CLASS_POINTER_DEFINITION(Triangle3D6)
BaseType::ShapeFunctionsGradientsType ShapeFunctionsGradientsType
Definition: triangle_3d_6.h:177
void PrintInfo(std::ostream &rOStream) const override
Definition: triangle_3d_6.h:619
ShapeFunctionsThirdDerivativesType & ShapeFunctionsThirdDerivatives(ShapeFunctionsThirdDerivativesType &rResult, const CoordinatesArrayType &rPoint) const override
Definition: triangle_3d_6.h:856
GeometriesArrayType GenerateEdges() const override
This method gives you all edges of this geometry.
Definition: triangle_3d_6.h:680
BaseType::ShapeFunctionsThirdDerivativesType ShapeFunctionsThirdDerivativesType
Definition: triangle_3d_6.h:193
friend class Triangle3D6
Definition: triangle_3d_6.h:1108
Short class definition.
Definition: array_1d.h:61
#define KRATOS_SERIALIZE_SAVE_BASE_CLASS(Serializer, BaseType)
Definition: define.h:812
#define KRATOS_SERIALIZE_LOAD_BASE_CLASS(Serializer, BaseType)
Definition: define.h:815
#define KRATOS_ERROR
Definition: exception.h:161
#define KRATOS_ERROR_IF(conditional)
Definition: exception.h:162
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
KratosZeroMatrix< double > ZeroMatrix
Definition: amatrix_interface.h:559
Internals::Matrix< double, AMatrix::dynamic, AMatrix::dynamic > Matrix
Definition: amatrix_interface.h:470
const GeometryData Triangle3D6< TPointType >::msGeometryData & msGeometryDimension(), Triangle3D6< TPointType >::AllShapeFunctionsValues(), AllShapeFunctionsLocalGradients()
Definition: brep_curve.h:483
std::istream & operator>>(std::istream &rIStream, LinearMasterSlaveConstraint &rThis)
input stream function
const GeometryData BrepCurve< TContainerPointType, TContainerPointEmbeddedType >::msGeometryData & msGeometryDimension
Definition: brep_curve.h:483
T & noalias(T &TheMatrix)
Definition: amatrix_interface.h:484
std::ostream & operator<<(std::ostream &rOStream, const LinearMasterSlaveConstraint &rThis)
output stream function
Definition: linear_master_slave_constraint.h:432
def load(f)
Definition: ode_solve.py:307
float temp
Definition: rotating_cone.py:85
integer i
Definition: TensorModule.f:17