KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
List of all members
Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes > Class Template Reference

A stabilized element for the incompressible Navier-Stokes equations. More...

#include <monolithic_dem_coupled_weak.h>

Inheritance diagram for Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >:
Collaboration diagram for Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >:

Public Member Functions

Life Cycle
 MonolithicDEMCoupledWeak (IndexType NewId=0)
 Default constuctor. More...
 
 MonolithicDEMCoupledWeak (IndexType NewId, const NodesArrayType &ThisNodes)
 Constructor using an array of nodes. More...
 
 MonolithicDEMCoupledWeak (IndexType NewId, GeometryType::Pointer pGeometry)
 Constructor using a geometry object. More...
 
 MonolithicDEMCoupledWeak (IndexType NewId, GeometryType::Pointer pGeometry, PropertiesType::Pointer pProperties)
 Constuctor using geometry and properties. More...
 
virtual ~MonolithicDEMCoupledWeak ()
 Destructor. More...
 
Operations
Element::Pointer Create (IndexType NewId, NodesArrayType const &ThisNodes, PropertiesType::Pointer pProperties) const override
 Create a new element of this type. More...
 
virtual void CalculateLocalSystem (MatrixType &rLeftHandSideMatrix, VectorType &rRightHandSideVector, const ProcessInfo &rCurrentProcessInfo) override
 Provides local contributions from body forces and OSS projection terms. More...
 
virtual void CalculateLeftHandSide (MatrixType &rLeftHandSideMatrix, const ProcessInfo &rCurrentProcessInfo) override
 Returns a zero matrix of appropiate size (provided for compatibility with scheme) More...
 
virtual void CalculateRightHandSide (VectorType &rRightHandSideVector, const ProcessInfo &rCurrentProcessInfo) override
 Provides local contributions from body forces and projections to the RHS. More...
 
virtual void CalculateMassMatrix (MatrixType &rMassMatrix, const ProcessInfo &rCurrentProcessInfo) override
 Computes local contributions to the mass matrix. More...
 
virtual void CalculateLocalVelocityContribution (MatrixType &rDampingMatrix, VectorType &rRightHandSideVector, const ProcessInfo &rCurrentProcessInfo) override
 Computes the local contribution associated to 'new' velocity and pressure values. More...
 
virtual void FinalizeNonLinearIteration (const ProcessInfo &rCurrentProcessInfo) override
 
virtual void Calculate (const Variable< double > &rVariable, double &rOutput, const ProcessInfo &rCurrentProcessInfo) override
 Implementation of Calculate to compute an error estimate. More...
 
virtual void Calculate (const Variable< array_1d< double, 3 > > &rVariable, array_1d< double, 3 > &rOutput, const ProcessInfo &rCurrentProcessInfo) override
 Implementation of Calculate to compute the local OSS projections. More...
 
virtual void EquationIdVector (EquationIdVectorType &rResult, const ProcessInfo &rCurrentProcessInfo) const override
 Provides the global indices for each one of this element's local rows. More...
 
virtual void GetDofList (DofsVectorType &rElementalDofList, const ProcessInfo &rCurrentProcessInfo) const override
 Returns a list of the element's Dofs. More...
 
virtual void GetFirstDerivativesVector (Vector &Values, int Step=0) const override
 Returns VELOCITY_X, VELOCITY_Y, (VELOCITY_Z,) PRESSURE for each node. More...
 
virtual void GetSecondDerivativesVector (Vector &Values, int Step=0) const override
 Returns ACCELERATION_X, ACCELERATION_Y, (ACCELERATION_Z,) 0 for each node. More...
 
virtual void CalculateOnIntegrationPoints (const Variable< array_1d< double, 3 > > &rVariable, std::vector< array_1d< double, 3 > > &rOutput, const ProcessInfo &rCurrentProcessInfo) override
 Obtain an array_1d<double,3> elemental variable, evaluated on gauss points. More...
 
virtual void CalculateOnIntegrationPoints (const Variable< double > &rVariable, std::vector< double > &rValues, const ProcessInfo &rCurrentProcessInfo) override
 Obtain a double elemental variable, evaluated on gauss points. More...
 
virtual void CalculateOnIntegrationPoints (const Variable< array_1d< double, 6 > > &rVariable, std::vector< array_1d< double, 6 > > &rValues, const ProcessInfo &rCurrentProcessInfo) override
 
virtual void CalculateOnIntegrationPoints (const Variable< Vector > &rVariable, std::vector< Vector > &rValues, const ProcessInfo &rCurrentProcessInfo) override
 
virtual void CalculateOnIntegrationPoints (const Variable< Matrix > &rVariable, std::vector< Matrix > &rValues, const ProcessInfo &rCurrentProcessInfo) override
 
Elemental Data
virtual int Check (const ProcessInfo &rCurrentProcessInfo) const override
 Checks the input and that all required Kratos variables have been registered. More...
 
Input and output
virtual std::string Info () const override
 Turn back information as a string. More...
 
virtual void PrintInfo (std::ostream &rOStream) const override
 Print information about this object. More...
 
- Public Member Functions inherited from Kratos::Element
 Element (IndexType NewId=0)
 
 Element (IndexType NewId, const NodesArrayType &ThisNodes)
 
 Element (IndexType NewId, GeometryType::Pointer pGeometry)
 
 Element (IndexType NewId, GeometryType::Pointer pGeometry, PropertiesType::Pointer pProperties)
 
 Element (Element const &rOther)
 Copy constructor. More...
 
 ~Element () override
 Destructor. More...
 
Elementoperator= (Element const &rOther)
 Assignment operator. More...
 
virtual Pointer Create (IndexType NewId, GeometryType::Pointer pGeom, PropertiesType::Pointer pProperties) const
 It creates a new element pointer. More...
 
virtual Pointer Clone (IndexType NewId, NodesArrayType const &ThisNodes) const
 It creates a new element pointer and clones the previous element data. More...
 
virtual IntegrationMethod GetIntegrationMethod () const
 
virtual void GetValuesVector (Vector &values, int Step=0) const
 
virtual void Initialize (const ProcessInfo &rCurrentProcessInfo)
 
virtual void ResetConstitutiveLaw ()
 
virtual void InitializeSolutionStep (const ProcessInfo &rCurrentProcessInfo)
 
virtual void InitializeNonLinearIteration (const ProcessInfo &rCurrentProcessInfo)
 
virtual void FinalizeSolutionStep (const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateFirstDerivativesContributions (MatrixType &rLeftHandSideMatrix, VectorType &rRightHandSideVector, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateFirstDerivativesLHS (MatrixType &rLeftHandSideMatrix, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateFirstDerivativesRHS (VectorType &rRightHandSideVector, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateSecondDerivativesContributions (MatrixType &rLeftHandSideMatrix, VectorType &rRightHandSideVector, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateSecondDerivativesLHS (MatrixType &rLeftHandSideMatrix, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateSecondDerivativesRHS (VectorType &rRightHandSideVector, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateDampingMatrix (MatrixType &rDampingMatrix, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateLumpedMassVector (VectorType &rLumpedMassVector, const ProcessInfo &rCurrentProcessInfo) const
 
virtual void AddExplicitContribution (const ProcessInfo &rCurrentProcessInfo)
 
virtual void AddExplicitContribution (const VectorType &rRHSVector, const Variable< VectorType > &rRHSVariable, const Variable< double > &rDestinationVariable, const ProcessInfo &rCurrentProcessInfo)
 This function is designed to make the element to assemble an rRHS vector identified by a variable rRHSVariable by assembling it to the nodes on the variable rDestinationVariable. (This is the double version) More...
 
virtual void AddExplicitContribution (const VectorType &rRHSVector, const Variable< VectorType > &rRHSVariable, const Variable< array_1d< double, 3 > > &rDestinationVariable, const ProcessInfo &rCurrentProcessInfo)
 This function is designed to make the element to assemble an rRHS vector identified by a variable rRHSVariable by assembling it to the nodes on the variable rDestinationVariable. (This is the vector version) More...
 
virtual void AddExplicitContribution (const MatrixType &rLHSMatrix, const Variable< MatrixType > &rLHSVariable, const Variable< Matrix > &rDestinationVariable, const ProcessInfo &rCurrentProcessInfo)
 This function is designed to make the element to assemble an rRHS vector identified by a variable rRHSVariable by assembling it to the nodes on the variable rDestinationVariable. (This is the matrix version) More...
 
virtual void Calculate (const Variable< Vector > &rVariable, Vector &Output, const ProcessInfo &rCurrentProcessInfo)
 
virtual void Calculate (const Variable< Matrix > &rVariable, Matrix &Output, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateOnIntegrationPoints (const Variable< bool > &rVariable, std::vector< bool > &rOutput, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateOnIntegrationPoints (const Variable< int > &rVariable, std::vector< int > &rOutput, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateOnIntegrationPoints (const Variable< array_1d< double, 3 >> &rVariable, std::vector< array_1d< double, 3 >> &rOutput, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateOnIntegrationPoints (const Variable< array_1d< double, 4 >> &rVariable, std::vector< array_1d< double, 4 >> &rOutput, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateOnIntegrationPoints (const Variable< array_1d< double, 6 >> &rVariable, std::vector< array_1d< double, 6 >> &rOutput, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateOnIntegrationPoints (const Variable< array_1d< double, 9 >> &rVariable, std::vector< array_1d< double, 9 >> &rOutput, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateOnIntegrationPoints (const Variable< ConstitutiveLaw::Pointer > &rVariable, std::vector< ConstitutiveLaw::Pointer > &rOutput, const ProcessInfo &rCurrentProcessInfo)
 
virtual void SetValuesOnIntegrationPoints (const Variable< bool > &rVariable, const std::vector< bool > &rValues, const ProcessInfo &rCurrentProcessInfo)
 
virtual void SetValuesOnIntegrationPoints (const Variable< int > &rVariable, const std::vector< int > &rValues, const ProcessInfo &rCurrentProcessInfo)
 
virtual void SetValuesOnIntegrationPoints (const Variable< double > &rVariable, const std::vector< double > &rValues, const ProcessInfo &rCurrentProcessInfo)
 
virtual void SetValuesOnIntegrationPoints (const Variable< array_1d< double, 3 >> &rVariable, const std::vector< array_1d< double, 3 >> &rValues, const ProcessInfo &rCurrentProcessInfo)
 
virtual void SetValuesOnIntegrationPoints (const Variable< array_1d< double, 4 >> &rVariable, const std::vector< array_1d< double, 4 >> &rValues, const ProcessInfo &rCurrentProcessInfo)
 
virtual void SetValuesOnIntegrationPoints (const Variable< array_1d< double, 6 >> &rVariable, const std::vector< array_1d< double, 6 >> &rValues, const ProcessInfo &rCurrentProcessInfo)
 
virtual void SetValuesOnIntegrationPoints (const Variable< array_1d< double, 9 >> &rVariable, const std::vector< array_1d< double, 9 >> &rValues, const ProcessInfo &rCurrentProcessInfo)
 
virtual void SetValuesOnIntegrationPoints (const Variable< Vector > &rVariable, const std::vector< Vector > &rValues, const ProcessInfo &rCurrentProcessInfo)
 
virtual void SetValuesOnIntegrationPoints (const Variable< Matrix > &rVariable, const std::vector< Matrix > &rValues, const ProcessInfo &rCurrentProcessInfo)
 
virtual void SetValuesOnIntegrationPoints (const Variable< ConstitutiveLaw::Pointer > &rVariable, const std::vector< ConstitutiveLaw::Pointer > &rValues, const ProcessInfo &rCurrentProcessInfo)
 
virtual void MassMatrix (MatrixType &rMassMatrix, const ProcessInfo &rCurrentProcessInfo)
 
virtual void AddMassMatrix (MatrixType &rLeftHandSideMatrix, double coeff, const ProcessInfo &rCurrentProcessInfo)
 
virtual void DampMatrix (MatrixType &rDampMatrix, const ProcessInfo &rCurrentProcessInfo)
 
virtual void AddInertiaForces (VectorType &rRightHandSideVector, double coeff, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateSensitivityMatrix (const Variable< double > &rDesignVariable, Matrix &rOutput, const ProcessInfo &rCurrentProcessInfo)
 
virtual void CalculateSensitivityMatrix (const Variable< array_1d< double, 3 > > &rDesignVariable, Matrix &rOutput, const ProcessInfo &rCurrentProcessInfo)
 
PropertiesType::Pointer pGetProperties ()
 returns the pointer to the property of the element. Does not throw an error, to allow copying of elements which don't have any property assigned. More...
 
const PropertiesType::Pointer pGetProperties () const
 
PropertiesTypeGetProperties ()
 
PropertiesType const & GetProperties () const
 
void SetProperties (PropertiesType::Pointer pProperties)
 
bool HasProperties () const
 Check that the Element has a correctly initialized pointer to a Properties instance. More...
 
virtual const Parameters GetSpecifications () const
 This method provides the specifications/requirements of the element. More...
 
void PrintData (std::ostream &rOStream) const override
 Print object's data. More...
 
 KRATOS_CLASS_INTRUSIVE_POINTER_DEFINITION (Element)
 
- Public Member Functions inherited from Kratos::GeometricalObject
 GeometricalObject (IndexType NewId=0)
 Default constructor. More...
 
 GeometricalObject (IndexType NewId, GeometryType::Pointer pGeometry)
 Default constructor. More...
 
 ~GeometricalObject () override
 Destructor. More...
 
 GeometricalObject (GeometricalObject const &rOther)
 Copy constructor. More...
 
GeometricalObjectoperator= (GeometricalObject const &rOther)
 Assignment operator. More...
 
virtual void SetGeometry (GeometryType::Pointer pGeometry)
 Sets the pointer to the geometry. More...
 
GeometryType::Pointer pGetGeometry ()
 Returns the pointer to the geometry. More...
 
const GeometryType::Pointer pGetGeometry () const
 Returns the pointer to the geometry (const version) More...
 
GeometryTypeGetGeometry ()
 Returns the reference of the geometry. More...
 
GeometryType const & GetGeometry () const
 Returns the reference of the geometry (const version) More...
 
FlagsGetFlags ()
 Returns the flags of the object. More...
 
Flags const & GetFlags () const
 Returns the flags of the object (const version) More...
 
void SetFlags (Flags const &rThisFlags)
 Sets the flags of the object. More...
 
DataValueContainerData ()
 
DataValueContainerGetData ()
 
DataValueContainer const & GetData () const
 
void SetData (DataValueContainer const &rThisData)
 
template<class TDataType >
bool Has (const Variable< TDataType > &rThisVariable) const
 
template<class TVariableType >
void SetValue (const TVariableType &rThisVariable, typename TVariableType::Type const &rValue)
 
template<class TVariableType >
TVariableType::Type & GetValue (const TVariableType &rThisVariable)
 
template<class TVariableType >
TVariableType::Type const & GetValue (const TVariableType &rThisVariable) const
 
void PrintData (std::ostream &rOStream) const override
 Print object's data. More...
 
unsigned int use_count () const noexcept
 
 KRATOS_CLASS_INTRUSIVE_POINTER_DEFINITION (GeometricalObject)
 Pointer definition of GeometricalObject. More...
 
bool IsActive () const
 Checks if the GeometricalObject is active. More...
 
- Public Member Functions inherited from Kratos::IndexedObject
 IndexedObject (IndexType NewId=0)
 Default constructor. More...
 
virtual ~IndexedObject ()
 Destructor. More...
 
 IndexedObject (IndexedObject const &rOther)
 Copy constructor. More...
 
IndexedObjectoperator= (IndexedObject const &rOther)
 Assignment operator. More...
 
template<class TObjectType >
IndexType operator() (TObjectType const &rThisObject) const
 
IndexType Id () const
 
IndexType GetId () const
 
virtual void SetId (IndexType NewId)
 
IndexTypeDepricatedIdAccess ()
 TODO: remove this function when removing data_file_io object. More...
 
 KRATOS_CLASS_POINTER_DEFINITION (IndexedObject)
 Pointer definition of IndexedObject. More...
 
- Public Member Functions inherited from Kratos::Flags
Flagsoperator= (Flags const &rOther)
 Assignment operator. More...
 
 operator bool () const
 
Flags operator~ () const
 
bool operator! () const
 
void AssignFlags (Flags const &rOther)
 
void Set (const Flags ThisFlag)
 
void Set (const Flags ThisFlag, bool Value)
 
void Reset (const Flags ThisFlag)
 
void Flip (const Flags ThisFlag)
 
void SetPosition (IndexType Position, bool Value=true)
 
bool GetPosition (IndexType Position) const
 
void FlipPosition (IndexType Position)
 
void ClearPosition (IndexType Position)
 
void Clear ()
 
Flags AsFalse () const
 
bool Is (Flags const &rOther) const
 
bool IsDefined (Flags const &rOther) const
 
bool IsNot (Flags const &rOther) const
 
bool IsNotDefined (Flags const &rOther) const
 
 KRATOS_CLASS_POINTER_DEFINITION (Flags)
 Pointer definition of Flags. More...
 
const Flagsoperator|= (const Flags &Other)
 
const Flagsoperator&= (const Flags &Other)
 
 Flags ()
 Default constructor. More...
 
 Flags (Flags const &rOther)
 Copy constructor. More...
 
virtual ~Flags ()
 Destructor. More...
 

Protected Member Functions

Protected static Member Variables
void CalculateWeights (ShapeFunctionDerivativesArrayType &rDN_DX, Matrix &rNContainer, Vector &rGaussWeights)
 Determine integration point weights and shape funcition derivatives from the element's geometry. More...
 
Protected Operations
virtual void CalculateTau (double &TauOne, double &TauTwo, const array_1d< double, 3 > &rAdvVel, const double Area, const double Density, const double KinViscosity, const ProcessInfo &rCurrentProcessInfo)
 Calculate Stabilization parameters. More...
 
virtual void CalculateStaticTau (double &TauOne, const array_1d< double, 3 > &rAdvVel, const double Area, const double Density, const double KinViscosity)
 Calculate momentum stabilization parameter (without time term). More...
 
virtual void AddMomentumRHS (VectorType &F, const double Density, const array_1d< double, TNumNodes > &rShapeFunc, const double Weight)
 Add the momentum equation contribution to the RHS (body forces) More...
 
virtual void AddOtherContributionsRHS (VectorType &F, const array_1d< double, TNumNodes > &rShapeFunc, const std::vector< double > &TimeSchemeWeights, const double &DeltaTime)
 
virtual void AddProjectionToRHS (VectorType &RHS, const array_1d< double, 3 > &rAdvVel, const double Density, const double TauOne, const double TauTwo, const array_1d< double, TNumNodes > &rShapeFunc, const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv, const double Weight, const double DeltaTime=1.0)
 Add OSS projection terms to the RHS. More...
 
void CalculateLumpedMassMatrix (MatrixType &rLHSMatrix, const double Mass)
 Add lumped mass matrix. More...
 
void AddConsistentMassMatrixContribution (MatrixType &rLHSMatrix, const array_1d< double, TNumNodes > &rShapeFunc, const double Density, const double Weight)
 
void AddMassStabTerms (MatrixType &rLHSMatrix, const double Density, const array_1d< double, 3 > &rAdvVel, const double TauOne, const array_1d< double, TNumNodes > &rShapeFunc, const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv, const double Weight)
 Add mass-like stabilization terms to LHS. More...
 
void AddIntegrationPointVelocityContribution (MatrixType &rDampingMatrix, VectorType &rDampRHS, const double Density, const double Viscosity, const array_1d< double, 3 > &rAdvVel, const double TauOne, const double TauTwo, const array_1d< double, TNumNodes > &rShapeFunc, const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv, const double Weight)
 Add a the contribution from a single integration point to the velocity contribution. More...
 
void AddProjectionResidualContribution (const array_1d< double, 3 > &rAdvVel, const double Density, array_1d< double, 3 > &rElementalMomRes, double &rElementalMassRes, const array_1d< double, TNumNodes > &rShapeFunc, const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv, const double Weight)
 Assemble the contribution from an integration point to the element's residual. More...
 
void ASGSMomResidual (const array_1d< double, 3 > &rAdvVel, const double Density, array_1d< double, 3 > &rElementalMomRes, const array_1d< double, TNumNodes > &rShapeFunc, const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv, const double Weight)
 Assemble the contribution from an integration point to the element's residual. More...
 
void OSSMomResidual (const array_1d< double, 3 > &rAdvVel, const double Density, array_1d< double, 3 > &rElementalMomRes, const array_1d< double, TNumNodes > &rShapeFunc, const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv, const double Weight)
 Assemble the contribution from an integration point to the element's residual. More...
 
virtual void GetEffectiveViscosity (const double Density, const double MolecularViscosity, const array_1d< double, TNumNodes > &rShapeFunc, const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv, double &TotalViscosity, const ProcessInfo &rCurrentProcessInfo)
 Add the contribution from Smagorinsky model to the (kinematic) viscosity. More...
 
virtual void GetAdvectiveVel (array_1d< double, 3 > &rAdvVel, const array_1d< double, TNumNodes > &rShapeFunc)
 Write the advective velocity evaluated at this point to an array. More...
 
virtual void GetAdvectiveVel (array_1d< double, 3 > &rAdvVel, const array_1d< double, TNumNodes > &rShapeFunc, const std::size_t Step)
 Write the advective velocity evaluated at this point to an array. More...
 
void GetConvectionOperator (array_1d< double, TNumNodes > &rResult, const array_1d< double, 3 > &rVelocity, const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv)
 Write the convective operator evaluated at this point (for each nodal funciton) to an array. More...
 
virtual void AddPointContribution (double &rResult, const Variable< double > &rVariable, const array_1d< double, TNumNodes > &rShapeFunc, const double Weight=1.0)
 Add the weighted value of a variable at a point inside the element to a double. More...
 
virtual void EvaluateInPoint (double &rResult, const Variable< double > &rVariable, const array_1d< double, TNumNodes > &rShapeFunc)
 Write the value of a variable at a point inside the element to a double. More...
 
virtual void EvaluateGradientOfScalarInPoint (array_1d< double, 3 > &rResult, const Variable< double > &rVariable, const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv)
 
virtual void EvaluateTimeDerivativeInPoint (double &rResult, const Variable< double > &rVariable, const array_1d< double, TNumNodes > &rShapeFunc, const double &DeltaTime, const std::vector< double > &rSchemeWeigths)
 
virtual void AddPointContribution (array_1d< double, 3 > &rResult, const Variable< array_1d< double, 3 > > &rVariable, const array_1d< double, TNumNodes > &rShapeFunc, const double Weight=1.0)
 Add the weighted value of a variable at a point inside the element to a vector. More...
 
virtual void EvaluateInPoint (array_1d< double, 3 > &rResult, const Variable< array_1d< double, 3 > > &rVariable, const array_1d< double, TNumNodes > &rShapeFunc)
 Write the value of a variable at a point inside the element to a double. More...
 
double ElementSize (const double)
 Return an estimate for the element size h, used to calculate the stabilization parameters. More...
 
double FilterWidth ()
 Return the filter width for the smagorinsky model (Delta squared) More...
 
double FilterWidth (const BoundedMatrix< double, TNumNodes, TDim > &DN_DX)
 Return the filter width for the smagorinsky model (Delta squared) More...
 
double SymmetricGradientNorm (const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv)
 Compute the norm of the symmetric gradient of velocity. More...
 
virtual void AddViscousTerm (MatrixType &rDampingMatrix, const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv, const double Weight)
 Adds the contribution of the viscous term to the momentum equation. More...
 
void AddBTransCB (MatrixType &rDampingMatrix, const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv, const double Weight)
 Adds the contribution of the viscous term to the momentum equation (alternate). More...
 
void ModulatedGradientDiffusion (MatrixType &rDampingMatrix, const BoundedMatrix< double, TNumNodes, TDim > &rDN_DX, const double Weight)
 
void CalculateB (BoundedMatrix< double,(TDim *TNumNodes)/2, TDim *TNumNodes > &rB, const BoundedMatrix< double, TNumNodes, TDim > &rShapeDeriv)
 Calculate the strain rate matrix. More...
 
virtual void CalculateC (BoundedMatrix< double,(TDim *TNumNodes)/2,(TDim *TNumNodes)/2 > &rC, const double Viscosity)
 Calculate a matrix that provides the stress given the strain rate. More...
 
double ConsistentMassCoef (const double Area)
 

Type Definitions

typedef IndexedObject BaseType
 base type: an IndexedObject that automatically has a unique number More...
 
typedef Node NodeType
 definition of node type (default is: Node) More...
 
typedef Properties PropertiesType
 
typedef Geometry< NodeTypeGeometryType
 definition of the geometry type with given NodeType More...
 
typedef Geometry< NodeType >::PointsArrayType NodesArrayType
 definition of nodes container type, redefined from GeometryType More...
 
typedef Vector VectorType
 
typedef Matrix MatrixType
 
typedef std::size_t IndexType
 
typedef std::size_t SizeType
 
typedef std::vector< std::size_t > EquationIdVectorType
 
typedef std::vector< Dof< double >::Pointer > DofsVectorType
 
typedef PointerVectorSet< Dof< double >, IndexedObjectDofsArrayType
 
typedef Kratos::Vector ShapeFunctionsType
 Type for shape function values container. More...
 
typedef Kratos::Matrix ShapeFunctionDerivativesType
 Type for a matrix containing the shape function gradients. More...
 
typedef GeometryType::ShapeFunctionsGradientsType ShapeFunctionDerivativesArrayType
 Type for an array of shape function gradient matrices. More...
 
 KRATOS_CLASS_INTRUSIVE_POINTER_DEFINITION (MonolithicDEMCoupledWeak)
 Pointer definition of MonolithicDEMCoupledWeak. More...
 

Serialization

class Serializer
 

Specialized implementation of MonolithicDEMCoupledWeak for functions that depend on TDim

void EquationIdVector (EquationIdVectorType &rResult, const ProcessInfo &rCurrentProcessInfo) const
 
void EquationIdVector (EquationIdVectorType &rResult, const ProcessInfo &rCurrentProcessInfo) const
 
void GetDofList (DofsVectorType &rElementalDofList, const ProcessInfo &rCurrentProcessInfo) const
 
void GetDofList (DofsVectorType &rElementalDofList, const ProcessInfo &rCurrentProcessInfo) const
 
void GetFirstDerivativesVector (Vector &Values, int Step) const
 
void GetFirstDerivativesVector (Vector &Values, int Step) const
 
void GetSecondDerivativesVector (Vector &Values, int Step) const
 
void GetSecondDerivativesVector (Vector &Values, int Step) const
 
void CalculateOnIntegrationPoints (const Variable< array_1d< double, 3 > > &rVariable, std::vector< array_1d< double, 3 > > &rOutput, const ProcessInfo &rCurrentProcessInfo)
 
void CalculateOnIntegrationPoints (const Variable< array_1d< double, 3 > > &rVariable, std::vector< array_1d< double, 3 > > &rOutput, const ProcessInfo &rCurrentProcessInfo)
 
void CalculateWeights (ShapeFunctionDerivativesArrayType &rDN_DX, Matrix &rNContainer, Vector &rGaussWeights)
 
void CalculateWeights (ShapeFunctionDerivativesArrayType &rDN_DX, Matrix &rNContainer, Vector &rGaussWeights)
 
double ElementSize (const double Area)
 
double ElementSize (const double Volume)
 
double FilterWidth ()
 
double FilterWidth ()
 
double FilterWidth (const BoundedMatrix< double, 3, 2 > &DN_DX)
 
double FilterWidth (const BoundedMatrix< double, 4, 3 > &DN_DX)
 
void CalculateB (BoundedMatrix< double, 3, 6 > &rB, const BoundedMatrix< double, 3, 2 > &rShapeDeriv)
 
void CalculateB (BoundedMatrix< double, 6, 12 > &rB, const BoundedMatrix< double, 4, 3 > &rShapeDeriv)
 
void CalculateC (BoundedMatrix< double, 3, 3 > &rC, const double Viscosity)
 
void CalculateC (BoundedMatrix< double, 6, 6 > &rC, const double Viscosity)
 
void AddViscousTerm (MatrixType &rDampMatrix, const BoundedMatrix< double, 3, 2 > &rShapeDeriv, const double Weight)
 
void AddViscousTerm (MatrixType &rDampMatrix, const BoundedMatrix< double, 4, 3 > &rShapeDeriv, const double Weight)
 
double ConsistentMassCoef (const double Area)
 
double ConsistentMassCoef (const double Volume)
 

Additional Inherited Members

- Public Types inherited from Kratos::Element
typedef Element ElementType
 definition of element type More...
 
typedef GeometricalObject BaseType
 base type: an GeometricalObject that automatically has a unique number More...
 
typedef Node NodeType
 definition of node type (default is: Node) More...
 
typedef Properties PropertiesType
 
typedef Geometry< NodeTypeGeometryType
 definition of the geometry type with given NodeType More...
 
typedef Geometry< NodeType >::PointsArrayType NodesArrayType
 definition of nodes container type, redefined from GeometryType More...
 
typedef Vector VectorType
 
typedef Matrix MatrixType
 
typedef std::size_t IndexType
 
typedef std::size_t SizeType
 
typedef Dof< doubleDofType
 
typedef std::vector< std::size_t > EquationIdVectorType
 
typedef std::vector< DofType::PointerDofsVectorType
 
typedef PointerVectorSet< DofTypeDofsArrayType
 
typedef GeometryData::IntegrationMethod IntegrationMethod
 Type definition for integration methods. More...
 
typedef GeometryData GeometryDataType
 
- Public Types inherited from Kratos::GeometricalObject
typedef Node NodeType
 Definition of the node type. More...
 
typedef Geometry< NodeTypeGeometryType
 The geometry type definition. More...
 
typedef std::size_t IndexType
 Defines the index type. More...
 
typedef std::size_t result_type
 Defines the result type. More...
 
- Public Types inherited from Kratos::IndexedObject
typedef std::size_t IndexType
 The definition of the index type. More...
 
typedef std::size_t result_type
 The definition of the result_type. More...
 
- Public Types inherited from Kratos::Flags
enum  FlagsList {
  Flag0 = BlockType(1) , Flag1 = BlockType(1) << 1 , Flag2 = BlockType(1) << 2 , Flag3 = BlockType(1) << 3 ,
  Flag4 = BlockType(1) << 4 , Flag5 = BlockType(1) << 5 , Flag6 = BlockType(1) << 6 , Flag7 = BlockType(1) << 7 ,
  Flag8 = BlockType(1) << 8 , Flag9 = BlockType(1) << 9 , Flag10 = BlockType(1) << 10 , Flag11 = BlockType(1) << 11 ,
  Flag12 = BlockType(1) << 12 , Flag13 = BlockType(1) << 13 , Flag14 = BlockType(1) << 14 , Flag15 = BlockType(1) << 15 ,
  Flag16 = BlockType(1) << 16 , Flag17 = BlockType(1) << 17 , Flag18 = BlockType(1) << 18 , Flag19 = BlockType(1) << 19 ,
  Flag20 = BlockType(1) << 20 , Flag21 = BlockType(1) << 21 , Flag22 = BlockType(1) << 22 , Flag23 = BlockType(1) << 23 ,
  Flag24 = BlockType(1) << 24 , Flag25 = BlockType(1) << 25 , Flag26 = BlockType(1) << 26 , Flag27 = BlockType(1) << 27 ,
  Flag28 = BlockType(1) << 28 , Flag29 = BlockType(1) << 29 , Flag30 = BlockType(1) << 30
}
 
typedef int64_t BlockType
 
typedef int64_t FlagType
 
typedef std::size_t IndexType
 
- Static Public Member Functions inherited from Kratos::GeometricalObject
static bool HasSameType (const GeometricalObject &rLHS, const GeometricalObject &rRHS)
 Checks if two GeometricalObject have the same type. More...
 
static bool HasSameType (const GeometricalObject *rLHS, const GeometricalObject *rRHS)
 Checks if two GeometricalObject have the same type (pointer version) More...
 
static bool HasSameGeometryType (const GeometricalObject &rLHS, const GeometricalObject &rRHS)
 Checks if two GeometricalObject have the same geometry type. More...
 
static bool HasSameGeometryType (const GeometricalObject *rLHS, const GeometricalObject *rRHS)
 Checks if two GeometricalObject have the same geometry type (pointer version) More...
 
static bool IsSame (const GeometricalObject &rLHS, const GeometricalObject &rRHS)
 Checks if two GeometricalObject are the same. More...
 
static bool IsSame (const GeometricalObject *rLHS, const GeometricalObject *rRHS)
 Checks if two GeometricalObject are the same (pointer version) More...
 
- Static Public Member Functions inherited from Kratos::Flags
static const Flags AllDefined ()
 
static const Flags AllTrue ()
 
static Flags Create (IndexType ThisPosition, bool Value=true)
 

Detailed Description

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
class Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >

A stabilized element for the incompressible Navier-Stokes equations.

This class implements a stabilized formulation based on the Variational Multiscale framework. The the subscales can be modeled using either Algebraic Subgird Scales (ASGS) or Orthogonal Subscales (OSS). In the case of OSS, the projection terms are treated explicitly (computed using the results of the previous iteration) and the subscales are not tracked in time. The choice of subscale model is made based on the ProcessInfo variable OSS_SWITCH (OSS if 1, ASGS otherwise). This class implements both the 2D and 3D versions of the element.

The ASGS implementation follows Ramon Codina, A stabilized finite element method for generalized stationary incompressible flows, Computer Methods in Applied Mechanics and Engineering. Vol. 190 (2001), 2681-2706.

The OSS implementation corresponds to the case identified as explicit, quasi- static orthogonal subscales in Ramon Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Computer Methods in Applied Mechanics and Engineering. Vol. 191 (2002), 4295-4321.

In addition to the stabilization, this element implements the Smagorinsky model of turbulence. This turbulent term is only activated if the elemental value C_SMAGORINSKY is set to something other than zero.

This class requires at least the following variables:
On each Node, as solution step variables VELOCITY, PRESSURE, ACCELERATION, MESH_VELOCITY, DENSITY, VISCOSITY.
On ProcessInfo OSS_SWITCH, DYNAMIC_TAU, DELTA_TIME.
If OSS is used, the nodes also require NODAL_AREA, ADVPROJ and DIVPROJ as solution step variables.
If Smagorinsky is used, C_SMAGORINSKY has to be defined on the elements.
Error estimation stores ERROR_RATIO on the elements.
Some additional variables can be used to print results on the element: SUBSCALE_VELOCITY, SUBSCALE_PRESSURE, TAUONE, TAUTWO, MU, VORTICITY.

See also
ResidualBasedEliminationBuilderAndSolver compatible monolithic solution strategy.
PressureSplittingBuilderAndSolver compatible segregated solution strategy.
TrilinosPressureSplittingBuilderAndSolver compatible mpi strategy.
DynamicSmagorinskyUtils to set the Smagorinsky parameter dynamically.
ResidualBasedPredictorCorrectorVelocityBossakScheme time scheme that can use OSS stabilization.

Member Typedef Documentation

◆ BaseType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef IndexedObject Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::BaseType

base type: an IndexedObject that automatically has a unique number

◆ DofsArrayType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef PointerVectorSet<Dof<double>, IndexedObject> Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::DofsArrayType

◆ DofsVectorType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef std::vector< Dof<double>::Pointer > Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::DofsVectorType

◆ EquationIdVectorType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef std::vector<std::size_t> Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::EquationIdVectorType

◆ GeometryType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef Geometry<NodeType> Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::GeometryType

definition of the geometry type with given NodeType

◆ IndexType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef std::size_t Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::IndexType

◆ MatrixType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef Matrix Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::MatrixType

◆ NodesArrayType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef Geometry<NodeType>::PointsArrayType Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::NodesArrayType

definition of nodes container type, redefined from GeometryType

◆ NodeType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef Node Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::NodeType

definition of node type (default is: Node)

◆ PropertiesType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef Properties Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::PropertiesType

Properties are used to store any parameters related to the constitutive law

◆ ShapeFunctionDerivativesArrayType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef GeometryType::ShapeFunctionsGradientsType Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::ShapeFunctionDerivativesArrayType

Type for an array of shape function gradient matrices.

◆ ShapeFunctionDerivativesType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef Kratos::Matrix Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::ShapeFunctionDerivativesType

Type for a matrix containing the shape function gradients.

◆ ShapeFunctionsType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef Kratos::Vector Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::ShapeFunctionsType

Type for shape function values container.

◆ SizeType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef std::size_t Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::SizeType

◆ VectorType

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
typedef Vector Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::VectorType

Constructor & Destructor Documentation

◆ MonolithicDEMCoupledWeak() [1/4]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::MonolithicDEMCoupledWeak ( IndexType  NewId = 0)
inline

Default constuctor.

Parameters
NewIdIndex number of the new element (optional)

◆ MonolithicDEMCoupledWeak() [2/4]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::MonolithicDEMCoupledWeak ( IndexType  NewId,
const NodesArrayType ThisNodes 
)
inline

Constructor using an array of nodes.

Parameters
NewIdIndex of the new element
ThisNodesAn array containing the nodes of the new element

◆ MonolithicDEMCoupledWeak() [3/4]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::MonolithicDEMCoupledWeak ( IndexType  NewId,
GeometryType::Pointer  pGeometry 
)
inline

Constructor using a geometry object.

Parameters
NewIdIndex of the new element
pGeometryPointer to a geometry object

◆ MonolithicDEMCoupledWeak() [4/4]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::MonolithicDEMCoupledWeak ( IndexType  NewId,
GeometryType::Pointer  pGeometry,
PropertiesType::Pointer  pProperties 
)
inline

Constuctor using geometry and properties.

Parameters
NewIdIndex of the new element
pGeometryPointer to a geometry object
pPropertiesPointer to the element's properties

◆ ~MonolithicDEMCoupledWeak()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::~MonolithicDEMCoupledWeak ( )
inlinevirtual

Destructor.

Member Function Documentation

◆ AddBTransCB()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::AddBTransCB ( MatrixType rDampingMatrix,
const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv,
const double  Weight 
)
inlineprotected

Adds the contribution of the viscous term to the momentum equation (alternate).

This function is an alternate implementation of MonolithicDEMCoupledWeak::AddViscousTerm. This version works with ublas matrices, using the relationship between stress and rate of strain given by MonolithicDEMCoupledWeak::CalculateC. It is currently unused (as MonolithicDEMCoupledWeak::AddViscousTerm is a more efficient implementation of the Cauchy equation) but it is left here so derived classes can use it to implement other constitutive equations.

Parameters
rDampingMatrixElemental Damping matrix
rShapeDerivElemental shape function derivatives
WeightEffective viscosity, in dynamic units, weighted by the integration point area

◆ AddConsistentMassMatrixContribution()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::AddConsistentMassMatrixContribution ( MatrixType rLHSMatrix,
const array_1d< double, TNumNodes > &  rShapeFunc,
const double  Density,
const double  Weight 
)
inlineprotected

◆ AddIntegrationPointVelocityContribution()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::AddIntegrationPointVelocityContribution ( MatrixType rDampingMatrix,
VectorType rDampRHS,
const double  Density,
const double  Viscosity,
const array_1d< double, 3 > &  rAdvVel,
const double  TauOne,
const double  TauTwo,
const array_1d< double, TNumNodes > &  rShapeFunc,
const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv,
const double  Weight 
)
inlineprotected

Add a the contribution from a single integration point to the velocity contribution.

◆ AddMassStabTerms()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::AddMassStabTerms ( MatrixType rLHSMatrix,
const double  Density,
const array_1d< double, 3 > &  rAdvVel,
const double  TauOne,
const array_1d< double, TNumNodes > &  rShapeFunc,
const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv,
const double  Weight 
)
inlineprotected

Add mass-like stabilization terms to LHS.

This function is only used in ASGS. For OSS, we avoid computing these terms, as they shoud cancel out with the dynamic part of the projection (which is not computed either)

Parameters
rLHSMatrixLeft hand side of the velocity-pressure system
DensityDensity on integration point
rAdvVelAdvective velocity on integration point
TauOneStabilization parameter for momentum equation
rShapeFuncShape funcitions evaluated on integration point
rShapeDerivShape function derivatives evaluated on integration point
WeightArea (or volume) times integration point weight

◆ AddMomentumRHS()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::AddMomentumRHS ( VectorType F,
const double  Density,
const array_1d< double, TNumNodes > &  rShapeFunc,
const double  Weight 
)
inlineprotectedvirtual

Add the momentum equation contribution to the RHS (body forces)

◆ AddOtherContributionsRHS()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::AddOtherContributionsRHS ( VectorType F,
const array_1d< double, TNumNodes > &  rShapeFunc,
const std::vector< double > &  TimeSchemeWeights,
const double DeltaTime 
)
inlineprotectedvirtual

◆ AddPointContribution() [1/2]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::AddPointContribution ( array_1d< double, 3 > &  rResult,
const Variable< array_1d< double, 3 > > &  rVariable,
const array_1d< double, TNumNodes > &  rShapeFunc,
const double  Weight = 1.0 
)
inlineprotectedvirtual

Add the weighted value of a variable at a point inside the element to a vector.

Evaluate a vector variable in the point where the form functions take the values given by rShapeFunc and add the result, weighted by Weight, to rResult. This is an auxiliary function used to compute values in integration points.

Parameters
rResultThe vector where the value will be added to
rVariableThe nodal variable to be read
rShapeFuncThe values of the form functions in the point
WeightThe variable will be weighted by this value before it is added to rResult

◆ AddPointContribution() [2/2]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::AddPointContribution ( double rResult,
const Variable< double > &  rVariable,
const array_1d< double, TNumNodes > &  rShapeFunc,
const double  Weight = 1.0 
)
inlineprotectedvirtual

Add the weighted value of a variable at a point inside the element to a double.

Evaluate a scalar variable in the point where the form functions take the values given by rShapeFunc and add the result, weighted by Weight, to rResult. This is an auxiliary function used to compute values in integration points.

Parameters
rResultThe double where the value will be added to
rVariableThe nodal variable to be read
rShapeFuncThe values of the form functions in the point
StepThe time Step (Defaults to 0 = Current)
WeightThe variable will be weighted by this value before it is added to rResult

◆ AddProjectionResidualContribution()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::AddProjectionResidualContribution ( const array_1d< double, 3 > &  rAdvVel,
const double  Density,
array_1d< double, 3 > &  rElementalMomRes,
double rElementalMassRes,
const array_1d< double, TNumNodes > &  rShapeFunc,
const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv,
const double  Weight 
)
inlineprotected

Assemble the contribution from an integration point to the element's residual.

Note that the dynamic term is not included in the momentum equation. If OSS_SWITCH = 1, we don't take into account the 'dynamic' stabilization terms, as it they belong to the finite element space.

◆ AddProjectionToRHS()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::AddProjectionToRHS ( VectorType RHS,
const array_1d< double, 3 > &  rAdvVel,
const double  Density,
const double  TauOne,
const double  TauTwo,
const array_1d< double, TNumNodes > &  rShapeFunc,
const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv,
const double  Weight,
const double  DeltaTime = 1.0 
)
inlineprotectedvirtual

Add OSS projection terms to the RHS.

◆ AddViscousTerm() [1/3]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::AddViscousTerm ( MatrixType rDampingMatrix,
const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv,
const double  Weight 
)
protectedvirtual

Adds the contribution of the viscous term to the momentum equation.

The viscous term is written in stress-divergence (Cauchy) form.

Parameters
rDampingMatrixElemental Damping matrix
rShapeDerivElemental shape function derivatives
WeightEffective viscosity, in dynamic units, weighted by the integration point area

◆ AddViscousTerm() [2/3]

void Kratos::MonolithicDEMCoupledWeak< 2, 3 >::AddViscousTerm ( MatrixType rDampMatrix,
const BoundedMatrix< double, 3, 2 > &  rShapeDeriv,
const double  Weight 
)
protected

◆ AddViscousTerm() [3/3]

void Kratos::MonolithicDEMCoupledWeak< 3, 4 >::AddViscousTerm ( MatrixType rDampMatrix,
const BoundedMatrix< double, 4, 3 > &  rShapeDeriv,
const double  Weight 
)
protected

◆ ASGSMomResidual()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::ASGSMomResidual ( const array_1d< double, 3 > &  rAdvVel,
const double  Density,
array_1d< double, 3 > &  rElementalMomRes,
const array_1d< double, TNumNodes > &  rShapeFunc,
const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv,
const double  Weight 
)
inlineprotected

Assemble the contribution from an integration point to the element's residual.

ASGS version. Note that rElementalMomRes should be initialized before calling this.

Parameters
rAdvVelConvection velocity (not including subscale)
DensityFluid density evaluated at integration point
rElementalMomResResult
rShapeFuncShape functions evaluated at integration point
rShapeDerivShape function derivatives evaluated at integration point
WeightIntegration point weight (as a fraction of area or volume)

◆ Calculate() [1/2]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::Calculate ( const Variable< array_1d< double, 3 > > &  rVariable,
array_1d< double, 3 > &  rOutput,
const ProcessInfo rCurrentProcessInfo 
)
inlineoverridevirtual

Implementation of Calculate to compute the local OSS projections.

If rVariable == ADVPROJ, This function computes the OSS projection terms using pressure and velocity values from the previous iteration. The projections are then added to the nodal variables ADVPROJ (Momentum residual) and DIVPROJ (Mass continuity residual). It is assumed that the scheme will divide the result by the assembled NODAL_AREA, which is equivalent to a nodal interpolation using a lumped mass matrix.

Parameters
rVariableUse ADVPROJ
OutputWill be overwritten with the elemental momentum error
rCurrentProcessInfoProcess info instance (unused)

Return output

Return output

Reimplemented from Kratos::Element.

◆ Calculate() [2/2]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::Calculate ( const Variable< double > &  rVariable,
double rOutput,
const ProcessInfo rCurrentProcessInfo 
)
inlineoverridevirtual

Implementation of Calculate to compute an error estimate.

If rVariable == ERROR_RATIO, this function will provide an a posteriori estimate of the norm of the subscale velocity, calculated as TauOne*||MomentumResidual||. Note that the residual of the momentum equation is evaluated at the element center and that the result has units of velocity (L/T). The error estimate both saved as the elemental ERROR_RATIO variable and returned as rOutput. If rVARIABLE == NODAL_AREA, the element's contribution to nodal area is added to its nodes.

Parameters
rVariableUse ERROR_RATIO or NODAL_AREA
rOutputReturns the error estimate for ERROR_RATIO, unused for NODAL_AREA
rCurrentProcessInfoProcess info instance (will be checked for OSS_SWITCH)
See also
MarkForRefinement for a use of the error ratio

Reimplemented from Kratos::Element.

◆ CalculateB() [1/3]

void Kratos::MonolithicDEMCoupledWeak< 2, 3 >::CalculateB ( BoundedMatrix< double, 3, 6 > &  rB,
const BoundedMatrix< double, 3, 2 > &  rShapeDeriv 
)
protected

◆ CalculateB() [2/3]

void Kratos::MonolithicDEMCoupledWeak< 3, 4 >::CalculateB ( BoundedMatrix< double, 6, 12 > &  rB,
const BoundedMatrix< double, 4, 3 > &  rShapeDeriv 
)
protected

◆ CalculateB() [3/3]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateB ( BoundedMatrix< double,(TDim *TNumNodes)/2, TDim *TNumNodes > &  rB,
const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv 
)
protected

Calculate the strain rate matrix.

Unused, left to support derived classes.

See also
MonolithicDEMCoupledWeak::AddBTransCB
Parameters
rBStrain rate matrix
rShapeDerivNodal shape funcion derivatives

◆ CalculateC() [1/3]

void Kratos::MonolithicDEMCoupledWeak< 2, 3 >::CalculateC ( BoundedMatrix< double, 3, 3 > &  rC,
const double  Viscosity 
)
protected

◆ CalculateC() [2/3]

void Kratos::MonolithicDEMCoupledWeak< 3, 4 >::CalculateC ( BoundedMatrix< double, 6, 6 > &  rC,
const double  Viscosity 
)
protected

◆ CalculateC() [3/3]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateC ( BoundedMatrix< double,(TDim *TNumNodes)/2,(TDim *TNumNodes)/2 > &  rC,
const double  Viscosity 
)
protectedvirtual

Calculate a matrix that provides the stress given the strain rate.

Unused, left to support derived classes.

See also
MonolithicDEMCoupledWeak::AddBTransCB. Note that only non-zero terms are written, so the output matrix should be initialized before calling this.
Parameters
rCMatrix representation of the stress tensor (output)
ViscosityEffective viscosity, in dynamic units, weighted by the integration point area

◆ CalculateLeftHandSide()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateLeftHandSide ( MatrixType rLeftHandSideMatrix,
const ProcessInfo rCurrentProcessInfo 
)
inlineoverridevirtual

Returns a zero matrix of appropiate size (provided for compatibility with scheme)

Parameters
rLeftHandSideMatrixLocal matrix, will be filled with zeros
rCurrentProcessInfoProcess info instance

Reimplemented from Kratos::Element.

◆ CalculateLocalSystem()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateLocalSystem ( MatrixType rLeftHandSideMatrix,
VectorType rRightHandSideVector,
const ProcessInfo rCurrentProcessInfo 
)
inlineoverridevirtual

Provides local contributions from body forces and OSS projection terms.

This is called during the assembly process and provides the terms of the system that are either constant or computed explicitly (from the 'old' iteration variables). In this case this means the body force terms and the OSS projections, that are treated explicitly.

Parameters
rLeftHandSideMatrixthe elemental left hand side matrix. Not used here, required for compatibility purposes only.
rRightHandSideVectorthe elemental right hand side
rCurrentProcessInfothe current process info

Reimplemented from Kratos::Element.

◆ CalculateLocalVelocityContribution()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateLocalVelocityContribution ( MatrixType rDampingMatrix,
VectorType rRightHandSideVector,
const ProcessInfo rCurrentProcessInfo 
)
inlineoverridevirtual

Computes the local contribution associated to 'new' velocity and pressure values.

Provides local contributions to the system associated to the velocity and pressure terms (convection, diffusion, pressure gradient/velocity divergence and stabilization).

Parameters
rDampingMatrixWill be filled with the velocity-proportional "damping" matrix
rRightHandSideVectorthe elemental right hand side vector
rCurrentProcessInfothe current process info instance

Reimplemented from Kratos::Element.

◆ CalculateLumpedMassMatrix()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateLumpedMassMatrix ( MatrixType rLHSMatrix,
const double  Mass 
)
inlineprotected

Add lumped mass matrix.

Adds the lumped mass matrix to an elemental LHS matrix. Note that the time factor (typically 1/(k*Dt) ) is added by the scheme outside the element.

Parameters
rLHSMatrixThe local matrix where the result will be added
MassThe weight assigned to each node (typically Density * Area / NumNodes or Density*Volume / NumNodes)

◆ CalculateMassMatrix()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateMassMatrix ( MatrixType rMassMatrix,
const ProcessInfo rCurrentProcessInfo 
)
inlineoverridevirtual

Computes local contributions to the mass matrix.

Provides the local contributions to the mass matrix, which is defined here as the matrix associated to velocity derivatives. Note that the mass matrix implemented here is lumped.

Parameters
rMassMatrixWill be filled with the elemental mass matrix
rCurrentProcessInfothe current process info instance

Reimplemented from Kratos::Element.

◆ CalculateOnIntegrationPoints() [1/7]

void Kratos::MonolithicDEMCoupledWeak< 2 >::CalculateOnIntegrationPoints ( const Variable< array_1d< double, 3 > > &  rVariable,
std::vector< array_1d< double, 3 > > &  rOutput,
const ProcessInfo rCurrentProcessInfo 
)

◆ CalculateOnIntegrationPoints() [2/7]

void Kratos::MonolithicDEMCoupledWeak< 3 >::CalculateOnIntegrationPoints ( const Variable< array_1d< double, 3 > > &  rVariable,
std::vector< array_1d< double, 3 > > &  rOutput,
const ProcessInfo rCurrentProcessInfo 
)

◆ CalculateOnIntegrationPoints() [3/7]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateOnIntegrationPoints ( const Variable< array_1d< double, 3 > > &  rVariable,
std::vector< array_1d< double, 3 > > &  rOutput,
const ProcessInfo rCurrentProcessInfo 
)
overridevirtual

Obtain an array_1d<double,3> elemental variable, evaluated on gauss points.

If the variable is VORTICITY, computes the vorticity (rotational of the velocity) based on the current velocity values. Otherwise, it assumes that the input variable is an elemental value and retrieves it. Implemented for a single gauss point only.

Parameters
rVariableKratos vector variable to get
OutputWill be filled with the values of the variable on integrartion points
rCurrentProcessInfoProcess info instance

◆ CalculateOnIntegrationPoints() [4/7]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateOnIntegrationPoints ( const Variable< array_1d< double, 6 > > &  rVariable,
std::vector< array_1d< double, 6 > > &  rValues,
const ProcessInfo rCurrentProcessInfo 
)
inlineoverridevirtual

◆ CalculateOnIntegrationPoints() [5/7]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateOnIntegrationPoints ( const Variable< double > &  rVariable,
std::vector< double > &  rValues,
const ProcessInfo rCurrentProcessInfo 
)
inlineoverridevirtual

Obtain a double elemental variable, evaluated on gauss points.

If the variable is TAUONE or TAUTWO, calculates the corresponding stabilization parameter for the element, based on rCurrentProcessInfo's DELTA_TIME and DYNAMIC_TAU. If the variable is MU, calculates the effective viscosity at the element center due to Smagorinsky (in 'dynamic' units). Otherwise, it assumes that the input variable is an elemental value and retrieves it. Implemented for a single gauss point only.

Parameters
rVariableKratos vector variable to compute
OutputWill be filled with the values of the variable on integrartion points
rCurrentProcessInfoProcess info instance

Reimplemented from Kratos::Element.

◆ CalculateOnIntegrationPoints() [6/7]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateOnIntegrationPoints ( const Variable< Matrix > &  rVariable,
std::vector< Matrix > &  rValues,
const ProcessInfo rCurrentProcessInfo 
)
inlineoverridevirtual

Reimplemented from Kratos::Element.

◆ CalculateOnIntegrationPoints() [7/7]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateOnIntegrationPoints ( const Variable< Vector > &  rVariable,
std::vector< Vector > &  rValues,
const ProcessInfo rCurrentProcessInfo 
)
inlineoverridevirtual

Reimplemented from Kratos::Element.

◆ CalculateRightHandSide()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateRightHandSide ( VectorType rRightHandSideVector,
const ProcessInfo rCurrentProcessInfo 
)
inlineoverridevirtual

Provides local contributions from body forces and projections to the RHS.

This is called during the assembly process and provides the RHS terms of the system that are either constant or computed explicitly (from the 'old' iteration variables). In this case this means the body force terms and the OSS projections, that are treated explicitly.

Parameters
rRightHandSideVectorWill be filled with the elemental right hand side
rCurrentProcessInfoProcessInfo instance from the ModelPart. It is expected to contain values for OSS_SWITCH, DYNAMIC_TAU and DELTA_TIME

Reimplemented from Kratos::Element.

◆ CalculateStaticTau()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateStaticTau ( double TauOne,
const array_1d< double, 3 > &  rAdvVel,
const double  Area,
const double  Density,
const double  KinViscosity 
)
inlineprotectedvirtual

Calculate momentum stabilization parameter (without time term).

Calculates the momentum tau parameter based on a given advective velocity. The dynamic term is not taken into account. This function is intended for error estimation only. In other cases use CalculateTau

Parameters
TauOneFirst stabilization parameter (momentum equation)
rAdvVeladvection velocity
AreaElemental area
DensityDensity on integrartion point
KinViscosityKinematic viscosity (nu) on integrartion point

◆ CalculateTau()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateTau ( double TauOne,
double TauTwo,
const array_1d< double, 3 > &  rAdvVel,
const double  Area,
const double  Density,
const double  KinViscosity,
const ProcessInfo rCurrentProcessInfo 
)
inlineprotectedvirtual

Calculate Stabilization parameters.

Calculates both tau parameters based on a given advective velocity. Takes time step and dynamic coefficient from given ProcessInfo instance. ProcessInfo variables DELTA_TIME and DYNAMIC_TAU will be used.

Parameters
TauOneFirst stabilization parameter (momentum equation)
TauTwoSecond stabilization parameter (mass equation)
rAdvVeladvection velocity
AreaElemental area
DensityDensity on integrartion point
KinViscosityKinematic viscosity (nu) on integrartion point
rCurrentProcessInfoProcess info instance

◆ CalculateWeights() [1/3]

void Kratos::MonolithicDEMCoupledWeak< 2, 3 >::CalculateWeights ( ShapeFunctionDerivativesArrayType rDN_DX,
Matrix rNContainer,
Vector rGaussWeights 
)
protected

◆ CalculateWeights() [2/3]

void Kratos::MonolithicDEMCoupledWeak< 3, 4 >::CalculateWeights ( ShapeFunctionDerivativesArrayType rDN_DX,
Matrix rNContainer,
Vector rGaussWeights 
)
protected

◆ CalculateWeights() [3/3]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::CalculateWeights ( ShapeFunctionDerivativesArrayType rDN_DX,
Matrix rNContainer,
Vector rGaussWeights 
)
protected

Determine integration point weights and shape funcition derivatives from the element's geometry.

◆ Check()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual int Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::Check ( const ProcessInfo rCurrentProcessInfo) const
inlineoverridevirtual

Checks the input and that all required Kratos variables have been registered.

This function provides the place to perform checks on the completeness of the input. It is designed to be called only once (or anyway, not often) typically at the beginning of the calculations, so to verify that nothing is missing from the input or that no common error is found.

Parameters
rCurrentProcessInfoThe ProcessInfo of the ModelPart that contains this element.
Returns
0 if no errors were found.

Reimplemented from Kratos::Element.

◆ ConsistentMassCoef() [1/3]

double Kratos::MonolithicDEMCoupledWeak< 2, 3 >::ConsistentMassCoef ( const double  Area)
protected

◆ ConsistentMassCoef() [2/3]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
double Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::ConsistentMassCoef ( const double  Area)
protected

◆ ConsistentMassCoef() [3/3]

double Kratos::MonolithicDEMCoupledWeak< 3, 4 >::ConsistentMassCoef ( const double  Volume)
protected

◆ Create()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
Element::Pointer Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::Create ( IndexType  NewId,
NodesArrayType const &  ThisNodes,
PropertiesType::Pointer  pProperties 
) const
inlineoverridevirtual

Create a new element of this type.

Returns a pointer to a new MonolithicDEMCoupledWeak element, created using given input

Parameters
NewIdthe ID of the new element
ThisNodesthe nodes of the new element
pPropertiesthe properties assigned to the new element
Returns
a Pointer to the new element

Reimplemented from Kratos::Element.

◆ ElementSize() [1/3]

double Kratos::MonolithicDEMCoupledWeak< 2, 3 >::ElementSize ( const double  Area)
protected

The size of the 2D element is estimated as the diameter of a circle of the same area. Area = Pi * (h/2)^2

See also
MonolithicDEMCoupledWeak::ElementSize

◆ ElementSize() [2/3]

double Kratos::MonolithicDEMCoupledWeak< 3, 4 >::ElementSize ( const double  Volume)
protected

The size of the 3D element is estimated as the diameter of the sphere circumscribed to a regular tetrahedron with the same volume.

See also
MonolithicDEMCoupledWeak::ElementSize

◆ ElementSize() [3/3]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
double Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::ElementSize ( const double  )
protected

Return an estimate for the element size h, used to calculate the stabilization parameters.

Estimate the element size from its area or volume, required to calculate stabilization parameters. Note that its implementation is different for 2D or 3D elements.

See also
MonolithicDEMCoupledWeak2D, MonolithicDEMCoupledWeak3D for actual implementation
Parameters
Volume(in 3D) or Area (in 2D) of the element
Returns
Element size h

◆ EquationIdVector() [1/3]

void Kratos::MonolithicDEMCoupledWeak< 2 >::EquationIdVector ( EquationIdVectorType rResult,
const ProcessInfo rCurrentProcessInfo 
) const
virtual

◆ EquationIdVector() [2/3]

void Kratos::MonolithicDEMCoupledWeak< 3 >::EquationIdVector ( EquationIdVectorType rResult,
const ProcessInfo rCurrentProcessInfo 
) const
virtual

◆ EquationIdVector() [3/3]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::EquationIdVector ( EquationIdVectorType rResult,
const ProcessInfo rCurrentProcessInfo 
) const
overridevirtual

Provides the global indices for each one of this element's local rows.

this determines the elemental equation ID vector for all elemental DOFs

Parameters
rResultA vector containing the global Id of each row
rCurrentProcessInfothe current process info object (unused)

Reimplemented from Kratos::Element.

◆ EvaluateGradientOfScalarInPoint()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::EvaluateGradientOfScalarInPoint ( array_1d< double, 3 > &  rResult,
const Variable< double > &  rVariable,
const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv 
)
inlineprotectedvirtual

◆ EvaluateInPoint() [1/2]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::EvaluateInPoint ( array_1d< double, 3 > &  rResult,
const Variable< array_1d< double, 3 > > &  rVariable,
const array_1d< double, TNumNodes > &  rShapeFunc 
)
inlineprotectedvirtual

Write the value of a variable at a point inside the element to a double.

Evaluate a scalar variable in the point where the form functions take the values given by rShapeFunc and write the result to rResult. This is an auxiliary function used to compute values in integration points.

Parameters
rResultThe double where the value will be added to
rVariableThe nodal variable to be read
rShapeFuncThe values of the form functions in the point

◆ EvaluateInPoint() [2/2]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::EvaluateInPoint ( double rResult,
const Variable< double > &  rVariable,
const array_1d< double, TNumNodes > &  rShapeFunc 
)
inlineprotectedvirtual

Write the value of a variable at a point inside the element to a double.

Evaluate a scalar variable in the point where the form functions take the values given by rShapeFunc and write the result to rResult. This is an auxiliary function used to compute values in integration points.

Parameters
rResultThe double where the value will be added to
rVariableThe nodal variable to be read
rShapeFuncThe values of the form functions in the point
StepThe time Step (Defaults to 0 = Current)

◆ EvaluateTimeDerivativeInPoint()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::EvaluateTimeDerivativeInPoint ( double rResult,
const Variable< double > &  rVariable,
const array_1d< double, TNumNodes > &  rShapeFunc,
const double DeltaTime,
const std::vector< double > &  rSchemeWeigths 
)
inlineprotectedvirtual

◆ FilterWidth() [1/6]

double Kratos::MonolithicDEMCoupledWeak< 2, 3 >::FilterWidth ( )
protected

Returns the squared element size, estimated as h^2 = 2*Area

See also
MonolithicDEMCoupledWeak::FilterWidth

◆ FilterWidth() [2/6]

double Kratos::MonolithicDEMCoupledWeak< 3, 4 >::FilterWidth ( )
protected

Returns the squared element size, estimated from the assumption V = (1/6) * h^3

See also
MonolithicDEMCoupledWeak::FilterWidth

◆ FilterWidth() [3/6]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
double Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::FilterWidth ( )
protected

Return the filter width for the smagorinsky model (Delta squared)

◆ FilterWidth() [4/6]

double Kratos::MonolithicDEMCoupledWeak< 2, 3 >::FilterWidth ( const BoundedMatrix< double, 3, 2 > &  DN_DX)
protected

Returns the square of the minimum element height, to be used as filter width in the Smagorinsky model

See also
MonolithicDEMCoupledWeak::FilterWidth

◆ FilterWidth() [5/6]

double Kratos::MonolithicDEMCoupledWeak< 3, 4 >::FilterWidth ( const BoundedMatrix< double, 4, 3 > &  DN_DX)
protected

Returns the square of the minimum element height, to be used as filter width in the Smagorinsky model

See also
MonolithicDEMCoupledWeak::FilterWidth

◆ FilterWidth() [6/6]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
double Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::FilterWidth ( const BoundedMatrix< double, TNumNodes, TDim > &  DN_DX)
protected

Return the filter width for the smagorinsky model (Delta squared)

◆ FinalizeNonLinearIteration()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::FinalizeNonLinearIteration ( const ProcessInfo rCurrentProcessInfo)
inlineoverridevirtual

this is called for non-linear analysis at the end of the iteration process

Reimplemented from Kratos::Element.

◆ GetAdvectiveVel() [1/2]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::GetAdvectiveVel ( array_1d< double, 3 > &  rAdvVel,
const array_1d< double, TNumNodes > &  rShapeFunc 
)
inlineprotectedvirtual

Write the advective velocity evaluated at this point to an array.

Writes the value of the advective velocity evaluated at a point inside the element to an array_1d

Parameters
rAdvVelOutput array
rShapeFuncShape functions evaluated at the point of interest

◆ GetAdvectiveVel() [2/2]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::GetAdvectiveVel ( array_1d< double, 3 > &  rAdvVel,
const array_1d< double, TNumNodes > &  rShapeFunc,
const std::size_t  Step 
)
inlineprotectedvirtual

Write the advective velocity evaluated at this point to an array.

Writes the value of the advective velocity evaluated at a point inside the element to an array_1d

Parameters
rAdvVelOutput array
rShapeFuncShape functions evaluated at the point of interest
StepThe time Step

◆ GetConvectionOperator()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::GetConvectionOperator ( array_1d< double, TNumNodes > &  rResult,
const array_1d< double, 3 > &  rVelocity,
const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv 
)
inlineprotected

Write the convective operator evaluated at this point (for each nodal funciton) to an array.

Evaluate the convective operator for each node's shape function at an arbitrary point

Parameters
rResultOutput vector
rVelocityVelocity evaluated at the integration point
rShapeDerivDerivatives of shape functions evaluated at the integration point
See also
GetAdvectiveVel provides rVelocity

◆ GetDofList() [1/3]

void Kratos::MonolithicDEMCoupledWeak< 2 >::GetDofList ( DofsVectorType rElementalDofList,
const ProcessInfo rCurrentProcessInfo 
) const
virtual
See also
MonolithicDEMCoupledWeak::

Reimplemented from Kratos::Element.

◆ GetDofList() [2/3]

void Kratos::MonolithicDEMCoupledWeak< 3 >::GetDofList ( DofsVectorType rElementalDofList,
const ProcessInfo rCurrentProcessInfo 
) const
virtual

◆ GetDofList() [3/3]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::GetDofList ( DofsVectorType rElementalDofList,
const ProcessInfo rCurrentProcessInfo 
) const
overridevirtual

Returns a list of the element's Dofs.

Parameters
ElementalDofListthe list of DOFs
rCurrentProcessInfothe current process info instance

Reimplemented from Kratos::Element.

◆ GetEffectiveViscosity()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::GetEffectiveViscosity ( const double  Density,
const double  MolecularViscosity,
const array_1d< double, TNumNodes > &  rShapeFunc,
const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv,
double TotalViscosity,
const ProcessInfo rCurrentProcessInfo 
)
inlineprotectedvirtual

Add the contribution from Smagorinsky model to the (kinematic) viscosity.

Parameters
DenstityDensity evaluated at the integration point (unused)
MolecularViscosityViscosity of the fluid, in kinematic units (m2/s)
rShapeFuncElemental shape functions, evaluated on the integration point
rShapeDerivShape function derivatives, evaluated on the integration point
TotalViscosityEffective viscosity (output)
rCurrentProcessInfoProcessInfo instance (unused)

◆ GetFirstDerivativesVector() [1/3]

void Kratos::MonolithicDEMCoupledWeak< 2 >::GetFirstDerivativesVector ( Vector Values,
int  Step 
) const
virtual

◆ GetFirstDerivativesVector() [2/3]

void Kratos::MonolithicDEMCoupledWeak< 3 >::GetFirstDerivativesVector ( Vector Values,
int  Step 
) const
virtual

◆ GetFirstDerivativesVector() [3/3]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::GetFirstDerivativesVector ( Vector Values,
int  Step = 0 
) const
overridevirtual

Returns VELOCITY_X, VELOCITY_Y, (VELOCITY_Z,) PRESSURE for each node.

Parameters
ValuesVector of nodal unknowns
StepGet result from 'Step' steps back, 0 is current step. (Must be smaller than buffer size)

Reimplemented from Kratos::Element.

◆ GetSecondDerivativesVector() [1/3]

void Kratos::MonolithicDEMCoupledWeak< 2 >::GetSecondDerivativesVector ( Vector Values,
int  Step 
) const
virtual

◆ GetSecondDerivativesVector() [2/3]

void Kratos::MonolithicDEMCoupledWeak< 3 >::GetSecondDerivativesVector ( Vector Values,
int  Step 
) const
virtual

◆ GetSecondDerivativesVector() [3/3]

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::GetSecondDerivativesVector ( Vector Values,
int  Step = 0 
) const
overridevirtual

Returns ACCELERATION_X, ACCELERATION_Y, (ACCELERATION_Z,) 0 for each node.

Parameters
ValuesVector of nodal second derivatives
StepGet result from 'Step' steps back, 0 is current step. (Must be smaller than buffer size)

Reimplemented from Kratos::Element.

◆ Info()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual std::string Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::Info ( ) const
inlineoverridevirtual

Turn back information as a string.

Reimplemented from Kratos::Element.

◆ KRATOS_CLASS_INTRUSIVE_POINTER_DEFINITION()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::KRATOS_CLASS_INTRUSIVE_POINTER_DEFINITION ( MonolithicDEMCoupledWeak< TDim, TNumNodes >  )

Pointer definition of MonolithicDEMCoupledWeak.

◆ ModulatedGradientDiffusion()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::ModulatedGradientDiffusion ( MatrixType rDampingMatrix,
const BoundedMatrix< double, TNumNodes, TDim > &  rDN_DX,
const double  Weight 
)
inlineprotected

◆ OSSMomResidual()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::OSSMomResidual ( const array_1d< double, 3 > &  rAdvVel,
const double  Density,
array_1d< double, 3 > &  rElementalMomRes,
const array_1d< double, TNumNodes > &  rShapeFunc,
const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv,
const double  Weight 
)
inlineprotected

Assemble the contribution from an integration point to the element's residual.

OSS version. Note that rElementalMomRes should be initialized before calling this.

Parameters
rAdvVelConvection velocity (not including subscale)
DensityFluid density evaluated at integration point
rElementalMomResResult
rShapeFuncShape functions evaluated at integration point
rShapeDerivShape function derivatives evaluated at integration point
WeightIntegration point weight (as a fraction of area or volume)

◆ PrintInfo()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
virtual void Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::PrintInfo ( std::ostream &  rOStream) const
inlineoverridevirtual

Print information about this object.

Reimplemented from Kratos::Element.

◆ SymmetricGradientNorm()

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
double Kratos::MonolithicDEMCoupledWeak< TDim, TNumNodes >::SymmetricGradientNorm ( const BoundedMatrix< double, TNumNodes, TDim > &  rShapeDeriv)
inlineprotected

Compute the norm of the symmetric gradient of velocity.

Parameters
rShapeDerivderivatives of the shape functions
Returns
Norm of the symmetric gradient

Friends And Related Function Documentation

◆ Serializer

template<unsigned int TDim, unsigned int TNumNodes = TDim + 1>
friend class Serializer
friend

The documentation for this class was generated from the following file: