KratosMultiphysics
KRATOS Multiphysics (Kratos) is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.
axisym_total_lagrangian.h
Go to the documentation of this file.
1 // KRATOS ___| | | |
2 // \___ \ __| __| | | __| __| | | __| _` | |
3 // | | | | | ( | | | | ( | |
4 // _____/ \__|_| \__,_|\___|\__|\__,_|_| \__,_|_| MECHANICS
5 //
6 // License: BSD License
7 // license: StructuralMechanicsApplication/license.txt
8 //
9 // Main authors: Vicente Mataix Ferrandiz
10 //
11 
12 #pragma once
13 
14 // System includes
15 
16 // External includes
17 
18 // Project includes
20 
21 namespace Kratos
22 {
31 
35 
39 
41 
46 class KRATOS_API(STRUCTURAL_MECHANICS_APPLICATION) AxisymTotalLagrangian
47  : public TotalLagrangian
48 {
49 public:
54 
56  typedef ConstitutiveLawType::Pointer ConstitutiveLawPointerType;
57 
60 
62  typedef std::size_t IndexType;
63 
65  typedef std::size_t SizeType;
66 
69 
73 
75  AxisymTotalLagrangian(IndexType NewId, GeometryType::Pointer pGeometry);
76  AxisymTotalLagrangian(IndexType NewId, GeometryType::Pointer pGeometry, PropertiesType::Pointer pProperties);
77 
79  ~AxisymTotalLagrangian() override;
80 
87 
94  Element::Pointer Create(
95  IndexType NewId,
96  GeometryType::Pointer pGeom,
97  PropertiesType::Pointer pProperties
98  ) const override;
99 
107  Element::Pointer Create(
108  IndexType NewId,
109  NodesArrayType const& ThisNodes,
110  PropertiesType::Pointer pProperties
111  ) const override;
112 
113  //std::string Info() const;
114 
118 
125 
127  // virtual String Info() const;
128 
130  // virtual void PrintInfo(std::ostream& rOStream) const;
131 
133  // virtual void PrintData(std::ostream& rOStream) const;
138 
139 protected:
145 
149 
151  {
152  }
153 
167 
168 private:
171 
175 
179 
183 
190  double GetIntegrationWeight(
191  const GeometryType::IntegrationPointsArrayType& IntegrationPoints,
192  const IndexType PointNumber,
193  const double detJ
194  ) const override;
195 
200 
204 
205  friend class Serializer;
206 
207  // A private default constructor necessary for serialization
208 
209  void save(Serializer& rSerializer) const override;
210 
211  void load(Serializer& rSerializer) override;
212 
219  //AxisymTotalLagrangian& operator=(const AxisymTotalLagrangian& rOther);
221  //AxisymTotalLagrangian(const AxisymTotalLagrangian& rOther);
223 
224 }; // Class AxisymTotalLagrangian
225 
233 
234 } // namespace Kratos.
Axisymmetric Total Lagrangian element.
Definition: axisym_total_lagrangian.h:48
ConstitutiveLaw ConstitutiveLawType
Definition: axisym_total_lagrangian.h:53
std::size_t IndexType
The definition of the index type.
Definition: axisym_total_lagrangian.h:62
KRATOS_CLASS_INTRUSIVE_POINTER_DEFINITION(AxisymTotalLagrangian)
Counted pointer of AxisymTotalLagrangian.
ConstitutiveLawType::Pointer ConstitutiveLawPointerType
Pointer type for constitutive laws.
Definition: axisym_total_lagrangian.h:56
std::size_t SizeType
The definition of the sizetype.
Definition: axisym_total_lagrangian.h:65
GeometryData::IntegrationMethod IntegrationMethod
Type definition for integration methods.
Definition: axisym_total_lagrangian.h:59
AxisymTotalLagrangian()
Definition: axisym_total_lagrangian.h:150
Definition: constitutive_law.h:47
std::size_t IndexType
Definition: flags.h:74
IntegrationMethod
Definition: geometry_data.h:76
std::vector< IntegrationPointType > IntegrationPointsArrayType
Definition: geometry.h:161
PointerVector is a container like stl vector but using a vector to store pointers to its data.
Definition: pointer_vector.h:72
The serialization consists in storing the state of an object into a storage format like data file or ...
Definition: serializer.h:123
Total Lagrangian element for 2D and 3D geometries.
Definition: total_lagrangian.h:53
std::size_t IndexType
The definition of the index type.
Definition: key_hash.h:35
Modeler::Pointer Create(const std::string &ModelerName, Model &rModel, const Parameters ModelParameters)
Checks if the modeler is registered.
Definition: modeler_factory.cpp:30
REF: G. R. Cowper, GAUSSIAN QUADRATURE FORMULAS FOR TRIANGLES.
Definition: mesh_condition.cpp:21
def load(f)
Definition: ode_solve.py:307